3,187 research outputs found
Information-Based Physics: An Observer-Centric Foundation
It is generally believed that physical laws, reflecting an inherent order in
the universe, are ordained by nature. However, in modern physics the observer
plays a central role raising questions about how an observer-centric physics
can result in laws apparently worthy of a universal nature-centric physics.
Over the last decade, we have found that the consistent apt quantification of
algebraic and order-theoretic structures results in calculi that possess
constraint equations taking the form of what are often considered to be
physical laws. I review recent derivations of the formal relations among
relevant variables central to special relativity, probability theory and
quantum mechanics in this context by considering a problem where two observers
form consistent descriptions of and make optimal inferences about a free
particle that simply influences them. I show that this approach to describing
such a particle based only on available information leads to the mathematics of
relativistic quantum mechanics as well as a description of a free particle that
reproduces many of the basic properties of a fermion. The result is an approach
to foundational physics where laws derive from both consistent descriptions and
optimal information-based inferences made by embedded observers.Comment: To be published in Contemporary Physics. The manuscript consists of
43 pages and 9 Figure
Random and exhaustive generation of permutations and cycles
In 1986 S. Sattolo introduced a simple algorithm for uniform random
generation of cyclic permutations on a fixed number of symbols. This algorithm
is very similar to the standard method for generating a random permutation, but
is less well known.
We consider both methods in a unified way, and discuss their relation with
exhaustive generation methods. We analyse several random variables associated
with the algorithms and find their grand probability generating functions,
which gives easy access to moments and limit laws.Comment: 9 page
Revealing Relationships among Relevant Climate Variables with Information Theory
A primary objective of the NASA Earth-Sun Exploration Technology Office is to
understand the observed Earth climate variability, thus enabling the
determination and prediction of the climate's response to both natural and
human-induced forcing. We are currently developing a suite of computational
tools that will allow researchers to calculate, from data, a variety of
information-theoretic quantities such as mutual information, which can be used
to identify relationships among climate variables, and transfer entropy, which
indicates the possibility of causal interactions. Our tools estimate these
quantities along with their associated error bars, the latter of which is
critical for describing the degree of uncertainty in the estimates. This work
is based upon optimal binning techniques that we have developed for
piecewise-constant, histogram-style models of the underlying density functions.
Two useful side benefits have already been discovered. The first allows a
researcher to determine whether there exist sufficient data to estimate the
underlying probability density. The second permits one to determine an
acceptable degree of round-off when compressing data for efficient transfer and
storage. We also demonstrate how mutual information and transfer entropy can be
applied so as to allow researchers not only to identify relations among climate
variables, but also to characterize and quantify their possible causal
interactions.Comment: 14 pages, 5 figures, Proceedings of the Earth-Sun System Technology
Conference (ESTC 2005), Adelphi, M
Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb
Wedetermined the embryonic origins of adult forebrain subventricular zone (SVZ) stem cells by Cre-lox fate mapping in transgenic mice. We found that all parts of the telencephalic neuroepithelium, including the medial ganglionic eminence and lateral ganglionic eminence (LGE) and the cerebral cortex, contribute multipotent, self-renewing stem cells to the adult SVZ. Descendants of the embryonic LGE and cortex settle in ventral and dorsal aspects of the dorsolateral SVZ, respectively. Both populations contribute new (5-bromo-2(')-deoxyuridine- labeled) tyrosine hydroxylase- and calretinin-positive interneurons to the adult olfactory bulb. However, calbindin-positive interneurons in the olfactory glomeruli were generated exclusively by LGE- derived stem cells. Thus, different SVZ stem cells have different embryonic origins, colonize different parts of the SVZ, and generate different neuronal progeny, suggesting that some aspects of embryonic patterning are preserved in the adult SVZ. This could have important implications for the design of endogenous stem cell-based therapies in the future
Applying dissipative dynamical systems to pseudorandom number generation: Equidistribution property and statistical independence of bits at distances up to logarithm of mesh size
The behavior of a family of dissipative dynamical systems representing
transformations of two-dimensional torus is studied on a discrete lattice and
compared with that of conservative hyperbolic automorphisms of the torus.
Applying dissipative dynamical systems to generation of pseudorandom numbers is
shown to be advantageous and equidistribution of probabilities for the
sequences of bits can be achieved. A new algorithm for generating uniform
pseudorandom numbers is proposed. The theory of the generator, which includes
proofs of periodic properties and of statistical independence of bits at
distances up to logarithm of mesh size, is presented. Extensive statistical
testing using available test packages demonstrates excellent results, while the
speed of the generator is comparable to other modern generators.Comment: 6 pages, 3 figures, 3 table
A Potential Foundation for Emergent Space-Time
We present a novel derivation of both the Minkowski metric and Lorentz
transformations from the consistent quantification of a causally ordered set of
events with respect to an embedded observer. Unlike past derivations, which
have relied on assumptions such as the existence of a 4-dimensional manifold,
symmetries of space-time, or the constant speed of light, we demonstrate that
these now familiar mathematics can be derived as the unique means to
consistently quantify a network of events. This suggests that space-time need
not be physical, but instead the mathematics of space and time emerges as the
unique way in which an observer can consistently quantify events and their
relationships to one another. The result is a potential foundation for emergent
space-time.Comment: The paper was originally titled "The Physics of Events: A Potential
Foundation for Emergent Space-Time". We changed the title (and abstract) to
be more direct when the paper was accepted for publication at the Journal of
Mathematical Physics. 24 pages, 15 figure
Approximating the Minimum Equivalent Digraph
The MEG (minimum equivalent graph) problem is, given a directed graph, to
find a small subset of the edges that maintains all reachability relations
between nodes. The problem is NP-hard. This paper gives an approximation
algorithm with performance guarantee of pi^2/6 ~ 1.64. The algorithm and its
analysis are based on the simple idea of contracting long cycles. (This result
is strengthened slightly in ``On strongly connected digraphs with bounded cycle
length'' (1996).) The analysis applies directly to 2-Exchange, a simple ``local
improvement'' algorithm, showing that its performance guarantee is 1.75.Comment: conference version in ACM-SIAM Symposium on Discrete Algorithms
(1994
Pattern Avoidance in Poset Permutations
We extend the concept of pattern avoidance in permutations on a totally
ordered set to pattern avoidance in permutations on partially ordered sets. The
number of permutations on that avoid the pattern is denoted
. We extend a proof of Simion and Schmidt to show that for any poset , and we exactly classify the posets for which
equality holds.Comment: 13 pages, 1 figure; v2: corrected typos; v3: corrected typos and
improved formatting; v4: to appear in Order; v5: corrected typos; v6: updated
author email addresse
- …
