662 research outputs found

    Knowledge is power: A theory of information, income and welfare spending

    Get PDF
    No voters cast their votes based on perfect information, but better educated and richer voters are on average better informed than others. We develop a model where the voting mistakes resulting from low political knowledge reduce the weight of poor voters, and cause parties to choose political platforms that are better aligned with the preferences of rich voters. In US election survey data, we find that income is more important in affecting voting behavior for more informed voters than for less informed voters, as predicted by the model. Further, in a panel of US states we find that when there is a strong correlation between income and political information, Congress representatives vote more conservatively, which is also in line with our theory.Political Economics

    Twenty Little Studies

    Get PDF
    Flowers and leaves in border around various title nameshttps://scholarsjunction.msstate.edu/cht-sheet-music/1255/thumbnail.jp

    Combining mass spectrometry, i2PEPICO, and FTIR spectroscopy: Comprehensive speciation in DMM/NO oxidation

    Get PDF
    Oxymethylene ethers (OMEs) are potential alternative fuels that can be produced in a sustainable way based on CO2 and electricity. Additionally, they exhibit low tendencies to emit NOx or soot during practical combustion. Dimethoxy methane (DMM, CH3OCH2OCH3) has received increasing attention as the smallest OME with a O-CH2-O moiety. In the face of a possible application in exhaust gas recirculation (EGR) scenarios, understanding the influence of NOx on DMM oxidation is of importance. In this work, eleven mixtures of DMM/NO/O2/Ar were investigated in an atmospheric laminar flow reactor employing an extensive set of diagnostics. Molecular-beam mass spectrometry (MBMS), Fourier-transform infrared (FTIR) spectroscopy, NOx chemiluminescence detection, and double imaging photoelectron photoion coincidence (i2PEPICO) spectroscopy were combined to obtain a reliable speciation. All in all, species concentrations from different instruments showed a good agreement and one technique could counterbalance the physical limitations of another technique in many cases. In this manner, accurate mole fraction profiles of intermediates like e.g. CH4, C2H4, NO2, and methyl formate (C2H4O2) were gained. Based on i2PEPICO results, nitromethane (CH3NO2) and trans-HONO could additionally be identified as crucial intermediates in the NO-assisted oxidation of DMM. The present data set therefore provides an excellent basis to enhance future model development

    Operation and performance of the ATLAS Tile Calorimeter in Run 1

    Get PDF
    The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8TeV with a total integrated luminosity of nearly 30 fb−1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report

    Towards natural care products: Structural and deposition studies of bio-based polymer and surfactant mixtures

    Get PDF
    Oppositely charged polymer-surfactant systems are expected to interact with formation of coacervate complexes near composition of charge-neutrality. Such behaviour is widely used in formulated products (e.g. household and personal care), where the co-deposition of coacervates and active ingredients on various surfaces is triggered by dilution. A transition towards the use of more sustainable ingredients is currently ongoing as a response to the need of more environmentally conscious choices in production, albeit slowed down by the often more complex and not fully understood bulk and interfacial behaviour of new ingredients. In this work, mixtures of a medium-chain fatty acid (sodium decanoate) and two grades of bio-based cationic modified inulin were studied. The phase behaviour was determined in a wide composition matrix. The formation of coacervate complexes was observed for the mixture with the higher charge density polymer at a surfactant concentration of 1–3 wt%, close to the surfactant critical micellar concentration in pure water. Such behaviour was confirmed by DLS and SAXS data, suggesting surfactant-polymer complexation in a concentrated phase of packed micelles with a micelle-to-micelle distance of ∼4.5 nm. In situ ellipsometry and neutron reflectometry experiments were conducted to study the effect on surface deposition when diluting. The ellipsometry showed an adsorbed mass of ∼1.3–1.9 mg/m2, consistent with the deposition of a coacervate layer, and considerably higher than the neat, adsorbed polymer layer of ∼0.3 mg/m2. In the case of the neutron reflectometry experiments, dilution was performed before contact with the surface (pre-mixing), and no adsorption of coacervates was observed, but rather the adsorption of a polymer layer (0.49–0.85 mg/m2). The different results obtained with the different techniques highlight the kinetic nature of bulk coacervate formation and deposition, and the competition between these two phenomena. Maximal deposition can be achieved if one can control this time window either by tuning the composition of the system or the experimental set-up, to mimic the conditions of a specific application

    Exploring the Early Time Behavior of the Excited States of an Archetype Thermally Activated Delayed Fluorescence Molecule

    Get PDF
    Optical pump–probe techniques allow for an in-depth study of dark excited states. Here, we utilize them to map and gain insights into the excited states involved in the thermally activated delayed fluorescence (TADF) mechanism of a benchmark TADF emitter DMAC-TRZ. The results identify different electronic excited states involved in the key TADF transitions and their nature by combining pump–probe and photoluminescence measurements. The photoinduced absorption signals are highly dependent on polarity, affecting the transition oscillator strength but not their relative energy positions. In methylcyclohexane, a strong and vibronically structured local triplet excited state absorption (3LE → 3LE n ) is observed, which is quenched in higher polarity solvents as 3CT becomes the lowest triplet state. Furthermore, ultrafast transient absorption (fsTA) confirms the presence of two stable conformers of DMAC-TRZ: (1) quasi-axial (QA) interconverting within 20 ps into (2) quasi-equatorial (QE) in the excited state. Moreover, fsTA highlights how sensitive excited state couplings are to the environment and the molecular conformation

    Real building implementation of a deep reinforcement learning controller to enhance energy efficiency and indoor temperature control

    Get PDF
    Deep Reinforcement Learning (DRL) has emerged as a promising approach to address the trade-off between energy efficiency and indoor comfort in buildings, potentially outperforming conventional Rule-Based Controllers (RBC). This paper explores the real-world application of a Soft-Actor Critic (SAC) DRL controller in a building’s Thermally Activated Building System (TABS), focusing on optimising energy consumption and maintaining comfortable indoor temperatures. Our approach involves pre-training the DRL agent using a simplified Resistance-Capacitance (RC) model calibrated with real building data. The study first benchmarks the DRL controller against three RBCs, two Proportional-Integral (PI) controllers and a Model Predictive Controller (MPC) in a simulated environment. In the simulation study, DRL reduces energy consumption by 15% to 50% and decreases temperature violations by 25% compared to RBCs, reducing also energy consumption and temperature violations compared to PI controllers by respectively 23% and 5%. Moreover, DRL achieves comparable performance in terms of temperature control but consuming 29% more energy than an ideal MPC. When implemented in a real building during a two-month cooling season, the DRL controller performances were compared with those of the best-performing RBC, enhancing indoor temperature control by 68% without increasing energy consumption. This research demonstrates an effective strategy for training and deploying DRL controllers in real building energy systems, highlighting the potential of DRL in practical energy management applications

    A deep blue B,N-doped heptacene emitter that shows both thermally activated delayed fluorescence and delayed fluorescence by triplet-triplet annihilation

    Get PDF
    Authors thank the Leverhulme Trust (RPG-2016-047). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement No 838885 (NarrowbandSSL) and 812872 (TADFlife). We thank Umicore for their generous supply of catalysts. S.S. acknowledges support from the Marie Skłodowska-Curie Individual Fellowship. SB acknowledges support from the Bayrisches Staatsministerium für Wissenschaft und Kunst (Stmwk) in the framework of the initiative "SolTech", as well as from the German Science foundation (DFG) (No. 392306670). Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifiques de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11, as well as the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under the grant agreement n111754.An easy-to-access, near-UV-emitting linearly extended B,N-doped heptacene with high thermal stability is designed and synthesized in good yields. This compound exhibits thermally activated delayed fluorescence (TADF) at ambient temperature from a multiresonant (MR) state and represents a rare example of a non-triangulene-based MR-TADF emitter. At lower temperatures triplet–triplet annihilation dominates. The compound simultaneously possesses narrow, deep-blue emission with CIE coordinates of (0.17, 0.01). While delayed fluorescence results mainly from triplet–triplet annihilation at lower temperatures in THF solution, where aggregates form upon cooling, the TADF mechanism takes over around room temperature in solution when the aggregates dissolve or when the compound is well dispersed in a solid matrix. The potential of our molecular design to trigger TADF in larger acenes is demonstrated through the accurate prediction of ΔEST using correlated wave-function-based calculations. On the basis of these calculations, we predicted dramatically different optoelectronic behavior in terms of both ΔEST and the optical energy gap of two constitutional isomers where only the boron and nitrogen positions change. A comprehensive structural, optoelectronic, and theoretical investigation is presented. In addition, the ability of the achiral molecule to assemble on a Au(111) surface to a highly ordered layer composed of enantiomorphic domains of racemic entities is demonstrated by scanning tunneling microscopy.PostprintPeer reviewe
    corecore