233 research outputs found
The Hubble Constant
I review the current state of determinations of the Hubble constant, which
gives the length scale of the Universe by relating the expansion velocity of
objects to their distance. There are two broad categories of measurements. The
first uses individual astrophysical objects which have some property that
allows their intrinsic luminosity or size to be determined, or allows the
determination of their distance by geometric means. The second category
comprises the use of all-sky cosmic microwave background, or correlations
between large samples of galaxies, to determine information about the geometry
of the Universe and hence the Hubble constant, typically in a combination with
other cosmological parameters. Many, but not all, object-based measurements
give values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc.
This is in mild discrepancy with CMB-based measurements, in particular those
from the Planck satellite, which give values of 67-68km/s/Mpc and typical
errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that
accuracy rather than precision is the remaining problem in a good determination
of the Hubble constant. Whether a discrepancy exists, and whether new physics
is needed to resolve it, depends on details of the systematics of the
object-based methods, and also on the assumptions about other cosmological
parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by
Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200
ASASSN-18di: discovery of a flare on a mid-M dwarf
We report and characterize a white-light superflare on a previously undiscovered M dwarf detected by the ASAS-SN survey. Employing various color-magnitude and color-spectral type relationships, we estimate several stellar parameters, including the quiescent V-band magnitude, from which we derive a flare amplitude of . We determine an r-band absolute magnitude of , consistent with a mid-M dwarf, and an approximate distance to the source of kpc. Using classical-flare models, we infer a flare energy of ergs, making this one of the strongest flares documented on an M dwarf
The Rise and Peak of the Luminous Type IIn SN 2017hcc/ATLAS17lsn from ASAS-SN and Swift UVOT Data
We present observations of the rise and peak of the Type IIn supernova SN 2017hcc/ATLAS17lsn obtained by the All-Sky Automated Survey for Supernovae (ASAS-SN) and Swift UVOT. The light curve of SN 2017hcc/ATLAS17lsn peaks at mag, which from the estimated redshift of the host galaxy (, Mpc) implies an absolute peak magnitude mag. The near-UV to optical spectral energy distribution of SN 2017hcc/ATLAS17lsn from Swift UVOT is consistent with a hot, but cooling blackbody with K on Oct. 28.4 and K on Nov. 19.6. The estimated peak bolometric luminosity erg s makes SN2017hcc/ATLAS17lsn one of the most luminous Type IIn supernovae studied to date. From the bolometric light curve we constrain the risetime to be days and the total radiated energy of the event to date is erg
ASASSN-14ae: a tidal disruption event at 200 Mpc
ASASSN-14ae is a candidate tidal disruption event (TDE) found at the centre of SDSS J110840.11+340552.2 (d ≃ 200 Mpc) by the All-Sky Automated Survey for Supernovae (ASAS-SN). We present ground-based and Swift follow-up photometric and spectroscopic observations of the source, finding that the transient had a peak luminosity of L ≃ 8 × 1043 erg s−1 and a total integrated energy of E ≃ 1.7 × 1050 erg radiated over the ∼5 months of observations presented. The blackbody temperature of the transient remains roughly constant at T ∼ 20 000 K while the luminosity declines by nearly 1.5 orders of magnitude during this time, a drop that is most consistent with an exponential, L ∝ e-t/t 0 with t0 ≃ 39 d. The source has broad Balmer lines in emission at all epochs as well as a broad He ii feature emerging in later epochs. We compare the colour and spectral evolution to both supernovae and normal AGN to show that ASASSN-14ae does not resemble either type of object and conclude that a TDE is the most likely explanation for our observations. At z = 0.0436, ASASSN-14ae is the lowest-redshift TDE candidate discovered at optical/UV wavelengths to date, and we estimate that ASAS-SN may discover 0.1–3 of these events every year in the future
Interacting Supernovae: Types IIn and Ibn
Supernovae (SNe) that show evidence of strong shock interaction between their
ejecta and pre-existing, slower circumstellar material (CSM) constitute an
interesting, diverse, and still poorly understood category of explosive
transients. The chief reason that they are extremely interesting is because
they tell us that in a subset of stellar deaths, the progenitor star may become
wildly unstable in the years, decades, or centuries before explosion. This is
something that has not been included in standard stellar evolution models, but
may significantly change the end product and yield of that evolution, and
complicates our attempts to map SNe to their progenitors. Another reason they
are interesting is because CSM interaction is an efficient engine for making
bright transients, allowing super-luminous transients to arise from normal SN
explosion energies, and allowing transients of normal SN luminosities to arise
from sub-energetic explosions or low radioactivity yield. CSM interaction
shrouds the fast ejecta in bright shock emission, obscuring our normal view of
the underlying explosion, and the radiation hydrodynamics of the interaction is
challenging to model. The CSM interaction may also be highly non-spherical,
perhaps linked to binary interaction in the progenitor system. In some cases,
these complications make it difficult to definitively tell the difference
between a core-collapse or thermonuclear explosion, or to discern between a
non-terminal eruption, failed SN, or weak SN. Efforts to uncover the physical
parameters of individual events and connections to possible progenitor stars
make this a rapidly evolving topic that continues to challenge paradigms of
stellar evolution.Comment: Final draft of a chapter in the "SN Handbook". Accepted. 25 pages, 3
fig
Kinematics and Dynamics of the Galactic Stellar Halo
The structure, kinematics and dynamics of the Galactic stellar halo are reviewed including evidence of substructure in the spatial distribution and kinematics of halo stars. Implications for galaxy formation theory are subsequently discussed; in particular it is argued that the observed kinematics of stars in the outer Galactic halo can be used as an important constraint on viable galaxy formation scenarios
Six months of multiwavelength follow-up of the tidal disruption candidate ASASSN-14li and implied TDE rates from ASAS-SN
We present ground-based and Swift photometric and spectroscopic observations of the candidate tidal disruption event (TDE) ASASSN-14li, found at the center of PGC043234 (d ' 90 Mpc) by the All-Sky Automated Survey for SuperNovae (ASAS-SN). The source had a peak bolometric luminosity of L ' 1044 ergs
Periodic eclipses of the young star PDS 110 discovered with WASP and KELT photometry
We report the discovery of eclipses by circumstellar disc material associated with the young star PDS 110 in the Ori OB1a association using the SuperWASP and Kilodegree Extremely Little Telescope surveys. PDS 110 (HD 290380, IRAS 05209-0107) is a rare Fe/Ge-type star, an similar to 10 Myr-old accreting intermediate-mass star showing strong infrared excess (L-IR/L-bol similar or equal to 0.25). Two extremely similar eclipses with a depth of 30 per cent and duration similar to 25 d were observed in 2008 November and 2011 January. We interpret the eclipses as caused by the same structure with an orbital period of 808 +/- 2 d. Shearing over a single orbit rules out diffuse dust clumps as the cause, favouring the hypothesis of a companion at similar to 2 au. The characteristics of the eclipses are consistent with transits by an unseen low-mass (1.8-70M(Jup)) planet or brown dwarf with a circumsecondary disc of diameter similar to 0.3 au. The next eclipse event is predicted to take place in 2017 September and could be monitored by amateur and professional observatories across the world
The Cow: Discovery of a Luminous, Hot, and Rapidly Evolving Transient
We present the ATLAS discovery and initial analysis of the first 18 days of the unusual transient event, ATLAS18qqn/AT2018cow. It is characterized by a high peak luminosity (~1.7 × 1044 erg s−1), rapidly evolving light curves (>5 mag rise to peak in ~3.5 days), and hot blackbody spectra, peaking at ~27,000 K that are relatively featureless and unchanging over the first two weeks. The bolometric light curve cannot be powered by radioactive decay under realistic assumptions. The detection of high-energy emission may suggest a central engine as the powering source. Using a magnetar model, we estimated an ejected mass of 0.1–0.4 M , which lies between that of low-energy core-collapse events and the kilonova, AT2017gfo. The spectra cooled rapidly from 27,000 to 15,000 K in just over two weeks but remained smooth and featureless. Broad and shallow emission lines appear after about 20 days, and we tentatively identify them as He i although they would be redshifted from their rest wavelengths. We rule out that there are any features in the spectra due to intermediate mass elements up to and including the Fe group. The presence of r-process elements cannot be ruled out. If these lines are due to He, then we suggest a low-mass star with residual He as a potential progenitor. Alternatively, models of magnetars formed in neutron star mergers, or accretion onto a central compact object, give plausible matches to the data
ASASSN-15lh: The Most Luminous Supernova Ever Discovered
We report the discovery and early evolution of ASASSN-15lh, the most luminous supernova ever found. At redshift z=0.2326, ASASSN-15lh reached an absolute magnitude of M_{u,AB} ~ -23.5 and bolometric luminosity L_bol ~ 2.2x10^45 ergs/s, which is >~ 2 times more luminous than any previously known supernova. Its spectra match the hydrogen-poor sub-class of super-luminous supernovae (SLSNe-I), whose energy sources and progenitors are poorly understood. In contrast to known SLSNe-I, most of which reside in star-forming, dwarf galaxies, its host appears to be a luminous galaxy (M_V ~ -22; M_K ~ -25.1) with little star formation. In the two months since its first detection, ASASSN-15lh has radiated ~7.5x10^51 ergs, challenging the popular magnetar model for the engine of SLSNe-I
- …
