306 research outputs found

    The Mass Assembly History of Galaxies and Clusters of Galaxies

    Full text link
    We discuss the mass assembly history both on cluster and galaxy scales and their impact on galaxy evolution. On cluster scale, we introduce our on-going PISCES project on Subaru, which plans to target ~15 clusters at 0.4<z<1.3 using the unique wide-field (30') optical camera Suprime-Cam and the spectrograph both in optical (FOCAS, 6') and near-infrared (FMOS, 30'). The main objectives of this project are twofold: (1) Mapping out the large scale structures in and around the clusters on 10-14 Mpc scale to study the hierarchical growth of clusters through assembly of surrounding groups. (2) Investigating the environmental variation of galaxy properties along the structures to study the origin of the morphology-density and star formation-density relations. Some initial results are presented. On galactic scale, we first present the stellar mass growth of cluster galaxies out to z~1.5 based on the near-infrared imaging of distant clusters and show that the mass assembly process of galaxies is largely completed by z~1.5 and is faster than the current semi-analytic models' predictions. We then focus on the faint end of the luminosity function at z~1 based on the Subaru/XMM-Newton Deep Survey imaging data. We show the deficit of red galaxies below M*+2 or 10^{10} Msun, which suggest less massive galaxies are either genuinely young or still vigorously forming stars in sharp contrast to the massive galaxies where mass is assembled and star formation is terminated long time ago.Comment: To appear in the proceedings of IAU colloq. No. 195, "Outskirts of Galaxy Clusters: intense life in the suburbs", Torino, 12-16 March 2004, 7 pages, 7 figures, uses IAU macr

    The Ks-band Luminosity and Stellar Mass Functions of Galaxies in z~1 Clusters

    Full text link
    We present the near-infrared (Ks-band) luminosity function of galaxies in two z~1 cluster candidates, 3C336 and Q1335+28. A third cluster, 3C289, was observed but found to be contaminated by a foreground system. Our wide field imaging data reach to Ks=20.5 (5sigma), corresponding to ~M*+2.7 with respect to the passive evolution. The near-infrared luminosity traces the stellar mass of a galaxy due to its small sensitivity to the recent star formation history. Thus the luminosity function can be transformed to the stellar mass function of galaxies using the JKJ-K colours with only a small correction (factor<2) for the effects of on-going star formation. The derived stellar mass function spans a wide range in mass from ~3 x 10^{11}Msun down to ~6 x 10^{9}Msun (set by the magnitude limit). The form of the mass function is very similar to lower redshift counterparts such as that from 2MASS/LCRS clusters (Balogh et al. 2001) and the z=0.31 clusters (Barger et al. 1998). This indicates little evolution of galaxy masses from z=1 to the present-day. Combined with colour data that suggest star formation is completed early (z>>1) in the cluster core, it seems that the galaxy formation processes (both star formation and mass assembly) are strongly accerelated in dense environments and has been largely completed by z=1. We investigate whether the epoch of mass assembly of massive cluster galaxies is earlier than that predicted by the hierarchical galaxy formation models. These models predict the increase of characteristic mass by more than factor ~3 between z=1 and the present day. This seems incompatible with our data.Comment: 12 pages, including 12 figures, uses mn.sty and epsf.sty. Accepted for publication in MNRAS Main Journa

    The Colour-Magnitude Relation as a Constraint on the Formation of Rich Cluster Galaxies

    Get PDF
    In this paper, we examine the role that the colour-magnitude relation (CMR) can play in constraining the formation history of rich cluster galaxies. Firstly, we consider the colour evolution of galaxies after star formation ceases. We show that the scatter of the CMR places a strong constraint on the spread in age of the bulk of the stellar population. However, although the bulk of stars must be formed in a short period, continuing formation of stars in a fraction of the galaxies is not so strongly constrained. We examine a model in which star formation occurs over an extended period of time in most galaxies. An extension of this type of star formation history allows us to reconcile the small present-day scatter of the CMR with the observed blue galaxy fractions of intermediate redshift galaxy clusters. Secondly, the CMR can also be used to constrain the degree of merging between pre-existing stellar systems. This test relies on the slope of the CMR. We show that random mergers between galaxies very rapidly remove any well-defined CMR. However, we prefer to examine the merger process using a self-consistent merger tree. In such a model there are two effects: massive galaxies preferentially merge with systems of similar mass; and the rate of mass growth is considerably smaller than for the random merger case. As a result of both of these effects, the CMR persists through a larger number of merger steps. The passive evolution of galaxy colours and their averaging in dissipationless mergers provide opposing constraints on the formation of cluster galaxies in a hierarchical model; but at the level of current constraints, a compromise solution appears possible.Comment: 17 pages, including 11 figures. Accepted for publication in MNRA

    A Bayesian Classifier for Photometric Redshifts: Identification of high redshift clusters

    Full text link
    Photometric redshift classifiers provide a means of estimating galaxy redshifts from observations using a small number of broad-band filters. However, the accuracy with which redshifts can be determined is sensitive to the star formation history of the galaxy, for example the effects of age, metallicity and on-going star formation. We present a photometric classifier that explicitly takes into account the degeneracies implied by these variations, based on the flexible stellar population synthesis code of Kodama & Arimoto. The situation is encouraging since many of the variations in stellar populations introduce colour changes that are degenerate. We use a Bayesian inversion scheme to estimate the likely range of redshifts compatible with the observed colours. When applied to existing multi-band photometry for Abell 370, most of the cluster members are correctly recovered with little field contamination. The inverter is focussed on the recovery of a wide variety of galaxy populations in distant (z~1) clusters from broad band colours covering the 4000 angstrom break. It is found that this can be achieved with impressive accuracy (Δz<0.1|\Delta z| < 0.1), allowing detailed investigation into the evolution of cluster galaxies with little selection bias.Comment: 18 pages, including 15 figures, Accepted for publication in MNRA

    Dependence of the Build-up of the Colour-Magnitude Relation on Cluster Richness at z ~ 0.8

    Full text link
    We present environmental dependence of the build-up of the colour-magnitude relation (CMR) at z ~ 0.8. It is well established that massive early-type galaxies exhibit a tight CMR in clusters up to at least z ~ 1. The faint end of the relation, however, has been much less explored especially at high redshifts primarily due to limited depths of the data. Some recent papers have reported a deficit of the faint red galaxies on the CMR at 0.8 < z < 1, but this has not been well confirmed yet and is still controversial. Using a deep, multi-colour, panoramic imaging data set of the distant cluster RXJ1716.4+6708 at z=0.81, newly taken with the Prime Focus Camera (Suprime-Cam) on the Subaru Telescope, we carry out an analysis of faint red galaxies with a care for incompleteness. We find that there is a sharp decline in the number of red galaxies toward the faint end of the CMR below M*+2. We compare our result with those for other clusters at z ~ 0.8 taken from the literature, which show or do not show the deficit. We suggest that the "deficit" of faint red galaxies is dependent on the richness or mass of the clusters, in the sense that poorer systems show stronger deficits. This indicates that the evolutionary stage of less massive galaxies depends critically on environment.Comment: 11 pages, 10 figures, accepted for publication in MNRA

    Environmental dependence of polycyclic aromatic hydrocarbon emission at z~0.8. Investigation by observing the RX J0152.7-1357 with AKARI

    Full text link
    We study the environmental dependence of the strength of polycyclic aromatic hydrocarbon (PAH) emission by AKARI observations of RX J0152.7-1357, a galaxy cluster at z=0.84. PAH emission reflects the physical conditions of galaxies and dominates 8 um luminosity (L8), which can directly be measured with the L15 band of AKARI. L8 to infrared luminosity (LIR) ratio is used as a tracer of the PAH strength. Both photometric and spectroscopic redshifts are applied to identify the cluster members. The L15-band-detected galaxies tend to reside in the outskirt of the cluster and have optically green colour, R-z'~ 1.2. We find no clear difference of the L8/LIR behaviour of galaxies in field and cluster environment. The L8/LIR of cluster galaxies decreases with specific-star-formation rate divided by that of main-sequence galaxies, and with LIR, consistent with the results for field galaxies. The relation between L8/LIR and LIR is between those at z=0 and z=2 in the literature. Our data also shows that starburst galaxies, which have lower L8/LIR than main-sequence, are located only in the outskirt of the cluster. All these findings extend previous studies, indicating that environment affects only the fraction of galaxy types and does not affect the L8/LIR behaviour of star-forming galaxies.Comment: 8 pages, 7 figures. Accepted for Publication in A&
    corecore