449 research outputs found
TERT promoter mutation and aberrant hypermethylation are associated with elevated expression in medulloblastoma and characterise the majority of non-infant SHH subgroup tumours.
The prognostic impact of TERT promoter mutations in glioblastomas is modified by the rs2853669 single nucleotide polymorphism
Human hotspot TERT promoter (TERTp) mutations have been reported in a wide range of tumours. Several studies have shown that TERTp mutations are associated with clinicopathological features; in some instances, TERTp mutations were considered as biomarkers of poor prognosis. The rs2853669 SNP, located in the TERT promoter region, was reported to modulate the increased TERT expression levels induced by the recurrent somatic mutations. In this study we aimed to determine the frequency and prognostic value of TERTp mutations and TERT rs2853669 SNP in 504 gliomas from Portuguese and Brazilian patients. TERTp mutations were detected in 47.8% of gliomas (216/452). Glioblastomas (GBM) exhibited the highest frequency of TERTp mutations (66.9%); in this glioma subtype, we found a significant association between TERTp mutations and poor prognosis, regardless of the population. Moreover, in a multivariate analysis, TERTp mutations were the only independent prognostic factor. Our data also showed that the poor prognosis conferred by TERTp mutations was restricted to GBM patients carrying the rs2853669 A allele and not in those carrying the G allele. In conclusion, the presence of TERTp mutations was associated with worse prognosis in GBM patients, although such association depended on the status of the rs2853669 SNP. The status of the rs2853669 SNP should be taken in consideration when assessing the prognostic value of TERTp mutations in GBM patients. TERTp mutations and the rs2853669 SNP can be used in the future as biomarkers of glioma prognosis.
What's new?
Cancer cells avoid senescence in part by reactivating telomerase (TERT), a ribonucleoprotein that replenishes shortening telomeres. Here, the authors discover a positive association between TERT promoter mutations and unfavorable prognosis in glioblastoma patients from Portuguese and Brazilian origin. This association was only observed in patients with a specific allelic background (AA) in a TERT polymorphism (rs2853669) recently linked to enhanced TERT mRNA levels. The authors recommend considering the allelic status of rs2853669 when assessing the prognostic value of TERT promoter mutations in glioblastoma patients.Portuguese Fundação para a Ciência e Tecnologia and Fundo Europeu de Desenvolvimento Regional (FEDER) and COMPETE – Programa Operacional Factores de Competitividade (POFC); Grant number: PTDC/SAU-ONC/115513/2009; Grant sponsor: Brazilian FAPESP; Grant number: 2012/19590–0; Grant sponsor: Programa Operacional Regional do Norte (ON.2 – O Novo Norte), under Quadro de Referência Estrategico Nacional (QREN) through Fundo Europeu de Desenvolvimento Regional (FEDER); Grant number: Microenvironment, Metabolism and Cancer; Grant sponsor: Fundação para a Ciência e Tecnologia; Grant number: SFRH/BD/81940/2011; Grant sponsor: Fundação para a Ciência e Tecnologia; Grant number: Program Ciência 2007; Grant sponsor: Fundação para a Ciência e Tecnologia; Grant number: Program Ciência 2008; Grant sponsor: Brazilian FAPESP; Grant number: 2013/25787-3; Grant sponsor: NORTE2020; Grant number: NORTE-01-0145-FEDER-000029Fundação para a Ciência e Tecnologiainfo:eu-repo/semantics/publishedVersio
Recommended from our members
DNA methylation-based classification of central nervous system tumours.
Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology
The GNAQ in the haystack: intramedullary meningeal melanocytoma of intermediate grade at T9-10 in a 58-year-old woman
Meningeal melanocytomas are rare tumors. They are derived from leptomeningeal melanocytes and predominantly occur along the spine and the posterior fossa. Here, the authors report a case of intramedullary melanocytoma of intermediate grade in a 58-year-old female patient who was initially misdiagnosed with malignant melanoma until mutational analyses of a panel of genes associated with melanotic tumors led to reclassification
Telomerase promoter mutations in cancer: an emerging molecular biomarker?
João Vinagre, Vasco Pinto and Ricardo Celestino contributed equally to
the manuscript.Cell immortalization has been considered for a long time as a classic hallmark of cancer cells. Besides telomerase reactivation, such immortalization could be due to telomere maintenance through the “alternative mechanism of telomere lengthening” (ALT) but the mechanisms underlying both forms of reactivation remained elusive. Mutations in the coding region of telomerase gene are very rare in the cancer setting, despite being associated with some degenerative diseases. Recently, mutations in telomerase (TERT) gene promoter were found in sporadic and familial melanoma and subsequently in several cancer models, notably in gliomas, thyroid cancer and bladder cancer. The importance of these findings has been reinforced by the association of TERT mutations in some cancer types with tumour aggressiveness and patient survival. In the first part of this review, we summarize the data on the biology of telomeres and telomerase, available methodological approaches and non-neoplastic diseases associated with telomere dysfunction. In the second part, we review the information on telomerase expression and genetic alterations in the most relevant types of cancer (skin, thyroid, bladder and central nervous system) on record, and discuss the value of telomerase as a new biomarker with impact on the prognosis and survival of the patients and as a putative therapeutic target
Atypical fibroxanthoma and pleomorphic dermal sarcoma harbor frequent NOTCH1/2 and FAT1 mutations and similar DNA copy number alteration profiles
Atypical fibroxanthomas and pleomorphic dermal sarcomas are tumors arising in sun-damaged skin of elderly patients. They have differing prognoses and are currently distinguished using histological criteria, such as invasion of deeper tissue structures, necrosis and lymphovascular or perineural invasion. To investigate the as-yet poorly understood genetics of these tumors, 41 atypical fibroxanthomas and 40 pleomorphic dermal sarcomas were subjected to targeted next-generation sequencing approaches as well as DNA copy number analysis by comparative genomic hybridization. In an analysis of the entire coding region of 341 oncogenes and tumor suppressor genes in 13 atypical fibroxanthomas using an established hybridization-based next-generation sequencing approach, we found that these tumors harbor a large number of mutations. Gene alterations were identified in more than half of the analyzed samples in FAT1, NOTCH1/2, CDKN2A, TP53, and the TERT promoter. The presence of these alterations was verified in 26 atypical fibroxanthoma and 35 pleomorphic dermal sarcoma samples by targeted amplicon-based next-generation sequencing. Similar mutation profiles in FAT1, NOTCH1/2, CDKN2A, TP53, and the TERT promoter were identified in both atypical fibroxanthoma and pleomorphic dermal sarcoma. Activating RAS mutations (G12 and G13) identified in 3 pleomorphic dermal sarcoma were not found in atypical fibroxanthoma. Comprehensive DNA copy number analysis demonstrated a wide array of different copy number gains and losses, with similar profiles in atypical fibroxanthoma and pleomorphic dermal sarcoma. In summary, atypical fibroxanthoma and pleomorphic dermal sarcoma are highly mutated tumors with recurrent mutations in FAT1, NOTCH1/2, CDKN2A, TP53, and the TERT promoter, and a range of DNA copy number alterations. These findings suggest that atypical fibroxanthomas and pleomorphic dermal sarcomas are genetically related, potentially representing two ends of a common tumor spectrum and distinguishing these entities is at present still best performed using histological criteria.Modern Pathology advance online publication, 3 November 2017; doi:10.1038/modpathol.2017.146.</p
TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma
Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association wit
Calcifying fibrous tumor and inflammatory myofibroblastic tumor are epigenetically related: A comparative genome-wide methylation study
Item does not contain fulltextBased on histological findings, calcifying fibrous tumor (CFT) may be a late (burned out) stage of inflammatory myofibroblastic tumor (IMT). This concept, however, has not been proven by molecular means. Five CFTs were analyzed for IMT-related rearrangements in ALK, ROS1 and RET using fluorescence in situ hybridization (FISH). Additionally, genome-wide methylation patterns were investigated and compared with IMT (n=7), leiomyoma (n=7), angioleiomyoma (n=9), myopericytoma (n=7) and reactive soft tissue lesions (n=10) using unsupervised hierarchical cluster analysis and t distributed stochastic neighbor embedding. CFT patients, 4 females and 1 male, had a median age of 20years ranging from 7 to 43years. Two patients were younger than 18years old. The tumors originated in the abdomen (n=4) and axilla (n=1). Histologically, all lesions were (multi) nodular and hypocellular consisting of bland looking (myo)fibroblasts embedded in a collagenous matrix with calcifications. FISH analysis brought up negative results for ALK, RET and ROS1 rearrangements. However, genome-wide methylation analysis revealed overlapping methylation patterns of CFT and IMT forming a distinct homogeneous methylation cluster with exception of one case clustering with myopericytoma/angioleiomyoma. In conclusion, DNA methylation profiling supports the concept that CFT and IMT represent both ends of a spectrum of one entity with CFT being the burn out stage of IMT
DNA methylation-based profiling of bone and soft tissue tumours: a validation study of the 'DKFZ Sarcoma Classifier'
Diagnosing bone and soft tissue neoplasms remains challenging because of the large number of subtypes, many of which lack diagnostic biomarkers. DNA methylation profiles have proven to be a reliable basis for the classification of brain tumours and, following this success, a DNA methylation-based sarcoma classification tool from the Deutsches Krebsforschungszentrum (DKFZ) in Heidelberg has been developed. In this study, we assessed the performance of their classifier on DNA methylation profiles of an independent data set of 986 bone and soft tissue tumours and controls. We found that the 'DKFZ Sarcoma Classifier' was able to produce a diagnostic prediction for 55% of the 986 samples, with 83% of these predictions concordant with the histological diagnosis. On limiting the validation to the 820 cases with histological diagnoses for which the DKFZ Classifier was trained, 61% of cases received a prediction, and the histological diagnosis was concordant with the predicted methylation class in 88% of these cases, findings comparable to those reported in the DKFZ Classifier paper. The classifier performed best when diagnosing mesenchymal chondrosarcomas (CHSs, 88% sensitivity), chordomas (85% sensitivity), and fibrous dysplasia (83% sensitivity). Amongst the subtypes least often classified correctly were clear cell CHSs (14% sensitivity), malignant peripheral nerve sheath tumours (27% sensitivity), and pleomorphic liposarcomas (29% sensitivity). The classifier predictions resulted in revision of the histological diagnosis in six of our cases. We observed that, although a higher tumour purity resulted in a greater likelihood of a prediction being made, it did not correlate with classifier accuracy. Our results show that the DKFZ Classifier represents a powerful research tool for exploring the pathogenesis of sarcoma; with refinement, it has the potential to be a valuable diagnostic tool
DNA Methylation Profiling Discriminates between Malignant Pleural Mesothelioma and Neoplastic or Reactive Histologic Mimics
- …
