174 research outputs found
Determination of pressure independent arterial stiffness by correcting pulse wave velocity for pressure-area relationship
Arterial stiffness index beta and cardio-ankle vascular index inherently depend on blood pressure but can be readily corrected
Objectives: Arterial stiffness index beta and cardio-ankle vascular index (CAVI) are widely accepted to quantify the intrinsic exponent (beta(0)) of the blood pressure (BP)-diameter relationship. CAVI and b assume an exponential relationship between pressure (P) and diameter (d). We aim to demonstrate that, under this assumption, beta and CAVI as currently implemented are inherently BP-dependent and to provide corrected, BP-independent forms of CAVI and beta.Methods and results: In P = P(ref)e(beta 0[(d/dref)-1)], usually reference pressure (P-ref) and reference diameter (d(ref)) are substituted with DBP and diastolic diameter to accommodate measurements. Consequently, the resulting exponent is not equal to the pressure-independent beta(0). CAVI does not only suffer from this 'reference pressure' effect, but also from the linear approximation of (dP=dd). For example, assuming beta(0) = 7, an increase of SBP/DBP from 110/70 to 170/120mmHg increased beta by 8.1% and CAVI by 14.3%. We derived corrected forms of b and of CAVI (CAVI(0)) that indeed did not change with BP and represent the pressure-independent beta(0). To substantiate the BP effect on CAVI in a typical follow-up study, we realistically simulated patients (n = 161) before and following BP-lowering 'treatment' (assuming no follow-up change in intrinsic beta(0) and therefore in actual P-d relationship). Lowering BP from 160 +/- 14/111 +/- 11 to 120 +/- 15/79 +/- 11 mmHg (p <0.001) resulted in a significant CAVI decrease (from 8.1 +/- 2.0 to 7.7 +/- 2.1, p = 0.008); CAVI(0) did not change (9.8 +/- 2.4 and 9.9 +/- 2.6, p = 0.499).Conclusion: beta and CAVI as currently implemented are inherently BP-dependent, potentially leading to erroneous conclusions in arterial stiffness trials. BP-independent forms are presented to readily overcome this problem.</p
Pressure-dependence of arterial stiffness: potential clinical implications
Background: Arterial stiffness measures such as pulse wave velocity (PWV) have a known dependence on actual blood pressure, requiring consideration in cardiovascular risk assessment and management. Given the impact of ageing on arterial wall structure, the pressure-dependence of PWV may vary with age. Methods: Using a noninvasive model-based approach, combining carotid artery echo-tracking and tonometry waveforms, we obtained pressure-area curves in 23 hypertensive patients at baseline and after 3 months of antihypertensive treatment. We predicted the follow-up PWV decrease using modelled baseline curves and follow-up pressures. In addition, on the basis of these curves, we estimated PWV values for two age groups (mean ages 41 and 64 years) at predefined hypertensive (160/90 mmHg) and normotensive (120/80mmHg) pressure ranges. Results: Follow-up measurements showed a near 1 m/s decrease in carotid PWV when compared with baseline, which fully agreed with our model-prediction given the roughly 10mmHg decrease in diastolic pressure. The stiffness-blood pressure-age pattern was in close agreement with corresponding data from the 'Reference Values for Arterial Stiffness' study, linking the physical and empirical bases of our findings. Conclusion: Our study demonstrates that the innate pressure-dependence of arterial stiffness may have implications for the clinical use of arterial stiffness measurements, both in risk assessment and in treatment monitoring of individual patients. We propose a number of clinically feasible approaches to account for the blood pressure effect on PWV measurements
Blood pressure variability in individuals with and without (pre)diabetes:the Maastricht Study
Objective: The mechanisms associating (pre)diabetes and cardiovascular disease (CVD) are incompletely understood. We hypothesize that greater blood pressure variability (BPV) may underlie this association, due to its association with (incident) CVD. Therefore, we investigated the association between (pre)diabetes and very short-term to mid-term BPV, that is within-visit, 24-h and 7-day BPV. Methods: Cross-sectional data from The Maastricht Study [normal glucose metabolism (NGM), n¼1924; prediabetes, n¼511; type 2 diabetes mellitus (T2DM), n¼975; 51% men, aged 608 years]. We determined SD for within visit BPV (n¼3244), average real variability for 24-h BPV (n¼2699) day (0900–2100 h) and night (0100–0600 h) separately, and SD for 7-day BPV (n¼2259). Differences in BPV as compared with NGM were assessed by multiple linear regressions with adjustment for potential confounders. Results: In T2DM, the average systolic/diastolic values of within-visit, 24-h and 7-day BPV were 4.8/2.6, 10.5/7.3 and 10.4/6.5 mmHg, respectively, and in prediabetes 4.9/ 2.6, 10.3/7.0 and 9.4/5.9 mmHg, respectively. T2DM was associated with greater nocturnal systolic BPV [0.42mmHg (95% confidence interval: 0.05–0.80)], and greater 7-day systolic [0.76mmHg (0.32–1.19)] and diastolic BPV [0.65mmHg (0.29–1.01)], whereas prediabetes was associated with greater within-visit systolic BPV only [0.35mmHg (0.06–0.65)], as compared with NGM. Conclusion: Both T2DM and prediabetes are associated with slightly greater very short-term to mid-term BPV, which may, according to previous literature, explain a small part of the increased CVD risk seen in (pre)diabetes. Nevertheless, these findings do not detract from the fact that very short-term to mid-term BPV is substantial and important in individuals with and without (pre)diabetes
Quantitative assessment of cardiac load-responsiveness during extracorporeal life support: case and rationale
We describe a case of a patient assisted by extracorporeal life support, in which we obtained the dynamic filling index, a measure for venous volume during extracorporeal life support, and used this index to assess cardiac load-responsiveness during acute reloading. While reloading, the obtained findings on cardiac pump function by the dynamic filling index were supported by trans-esophageal echocardiography and standard pressure measurement. This suggests that the dynamic filling index can be used to assess cardiac load-responsiveness during extracorporeal life support
Associations of Arterial Stiffness With Cognitive Performance, and the Role of Microvascular Dysfunction:The Maastricht Study
The mechanisms underlying cognitive impairment are incompletely understood but may include arterial stiffness and microvascular dysfunction. In the population-based Maastricht Study, we investigated the association between arterial stiffness and cognitive performance, and whether any such association was mediated by microvascular dysfunction. We included cross-sectional data of 2544 participants (age, 59.7 years; 51.0% men; 26.0% type 2 diabetes mellitus). We used carotid-femoral pulse wave velocity and carotid distensibility coefficient as measures of aortic and carotid stiffness, respectively. We calculated a composite score of microvascular dysfunction based on magnetic resonance imaging features of cerebral small vessel disease, flicker light-induced retinal arteriolar and venular dilation response, albuminuria, and plasma biomarkers of microvascular dysfunction (sICAM-1 [soluble intercellular adhesion molecule-1], sVCAM-1 [soluble vascular adhesion molecule-1], sE-selectin [soluble E-selectin], and vWF [von Willebrand factor]). Cognitive domains assessed were memory, processing speed, and executive function. A cognitive function score was calculated as the average of these domains. Higher aortic stiffness (per m/s) was associated with lower cognitive function (β, -0.018 SD [95% CI, -0.036 to -0.000]) independent of age, sex, education, and cardiovascular risk factors, but higher carotid stiffness was not. Higher aortic stiffness (per m/s) was associated with a higher microvascular dysfunction score (β, 0.034 SD [95% CI, 0.014 to 0.053]), and a higher microvascular dysfunction score (per SD) was associated with lower cognitive function (β, -0.089 SD [95% CI, -0.124 to -0.053]). Microvascular dysfunction significantly explained 16.2% of the total effect of aortic stiffness on cognitive function. The present study showed that aortic stiffness, but not carotid stiffness, is independently associated with worse cognitive performance, and that this association is in part explained by microvascular dysfunction
No accelerated arterial aging in relatively young women after preeclampsia as compared to normotensive pregnancy
IntroductionPreeclampsia, an endothelial disorder of pregnancy, predisposes to remote cardiovascular diseases (CVD). Whether there is an accelerated effect of aging on endothelial decline in former preeclamptic women is unknown. We investigated if the arterial aging regarding endothelial-dependent and -independent vascular function is more pronounced in women with a history of preeclampsia as compared to women with a history of solely normotensive gestation(s).MethodsData was used from the Queen of Hearts study (ClinicalTrials.gov Identifier NCT02347540); a large cross-sectional study on early detection of cardiovascular disease among young women (≥18 years) with a history of preeclampsia and a control group of low-risk healthy women with a history of uncomplicated pregnancies. Brachial artery flow-mediated dilation (FMD; absolute, relative and allometric) and sublingually administered nitroglycerine-mediated dilation (NGMD; absolute and relative) were measured using ultrasound. Cross-sectional associations of age with FMD and NGMD were investigated by linear regression. Models were adjusted for body mass index, smoking, antihypertensive drug use, mean arterial pressure, fasting glucose, menopausal state, family history of CVD and stress stimulus during measurement. Effect modification by preeclampsia was investigated by including an interaction term between preeclampsia and age in regression models.ResultsOf the 1,217 included women (age range 22–62 years), 66.0% had a history of preeclampsia and 34.0% of normotensive pregnancy. Advancing age was associated with a decrease in relative FMD and NGMD (unadjusted regression coefficient: FMD: −0.48%/10 years (95% CI:−0.65 to −0.30%/10 years), NGMD: −1.13%/10 years (−1.49 to −0.77%/10 years)) and increase in brachial artery diameter [regression coefficient = 0.16 mm/10 years (95% CI 0.13 to 0.19 mm/10 years)]. Similar results were found when evaluating FMD and NGMD as absolute increase or allometrically, and after confounder adjustments. These age-related change were comparable in former preeclamptic women and controls (p-values interaction ≥0.372). Preeclampsia itself was independently associated with consistently smaller brachial artery diameter, but not with FMD and NGMD.ConclusionIn young- to middle-aged women, vascular aging in terms of FMD and NGMD was not accelerated in women after preeclampsia compared to normotensive pregnancies, even though former preeclamptic women consistently have smaller brachial arteries
The Maastricht Acquisition Platform for Studying Mechanisms of Cell-Matrix Crosstalk (MAPEX): An Interdisciplinary and Systems Approach towards Understanding Thoracic Aortic Disease
Current management guidelines for ascending thoracic aortic aneurysms (aTAA) recommend intervention once ascending or sinus diameter reaches 5-5.5 cm or shows a growth rate of \u3e0.5 cm/year estimated from echo/CT/MRI. However, many aTAA dissections (aTAAD) occur in vessels with diameters below the surgical intervention threshold ofMoreover, during aTAA repair surgeons observe and experience considerable variations in tissue strength, thickness, and stiffness that appear not fully explained by patient risk factors. To improve the understanding of aTAA pathophysiology, we established a multi-disciplinary research infrastructure: The Maastricht acquisition platform for studying mechanisms of tissue-cell crosstalk (MAPEX). The explicit scientific focus of the platform is on the dynamic interactions between vascular smooth muscle cells and extracellular matrix (i.e., cell-matrix crosstalk), which play an essential role in aortic wall mechanical homeostasis. Accordingly, we consider pathophysiological influences of wall shear stress, wall stress, and smooth muscle cell phenotypic diversity and modulation. Co-registrations of hemodynamics and deep phenotyping at the histological and cell biology level are key innovations of our platform and are critical for understanding aneurysm formation and dissection at a fundamental level. The MAPEX platform enables the interpretation of the data in a well-defined clinical context and therefore has real potential for narrowing existing knowledge gaps. A better understanding of aortic mechanical homeostasis and its derangement may ultimately improve diagnostic and prognostic possibilities to identify and treat symptomatic and asymptomatic patients with existing and developing aneurysms
- …
