235 research outputs found
Precision planar drift chambers and cradle for the TWIST muon decay spectrometer
To measure the muon decay parameters with high accuracy, we require an array
of precision drift detector layers whose relative position is known with very
high accuracy. This article describes the design, construction and performance
of these detectors in the TWIST (TRIUMF Weak Interaction Symmetry Test)
spectrometer.Comment: 44 pages, 16 Postscript figures, LaTeX2e, uses Elsevier class
elsart.cls, package graphicx, submitted to Nuclear Instruments & Methods in
Physics Researc
Recommended from our members
A CW-pion focusing horn for low-energy muon neutrino beams
Low-energy muon neutrino beams can be produced from pion decays in-flight at high-intensity accelerators, such as the Los Alamos Meson Physics Facility (LAMPF), providing a new tool to study the role of the weak interaction in nuclear and particle physics. Employing a pion focusing device can enhance the neutrino flux by large factors, and reduce backgrounds by sign-selection of the parent pions. However, LAMPF's long beam pulse and high repetition rate makes it impractical to use pulsed horns like those found at high-energy accelerators. In this paper we discuss a CW-pion focusing device that uses coils wound inside vanes mounted radially around the beam axis to provide an azimuthal field. From our studies with a prototype magnet, we have found the optimum field configuration needed to focus pions at LAMPF energies can be obtained by adjusting the radial density of turns in the coils. This optimum yields an eight-fold increase in neutrino flux above the muon threshold over the bare-target case. Our calculations also indicate a correlation between the arrival time of the neutrinos in the detector and their energy
Neutrino induced transitions between the ground states of the A=12 triad
Neutrino induced reactions on C, an ingredient of liquid
scintillators, have been studied in several experiments. We show that for
currently available neutrino energies, 300 MeV, calculated
exclusive cross sections CN for both muon
and electron neutrinos are essentially model independent, provided the
calculations simultaneously describe the rates of several other reactions
involving the same states or their isobar analogs. The calculations agree well
with the measured cross sections, which can be therefore used to check the
normalization of the incident neutrino spectrum and the efficiency of the
detector.Comment: 9 pages REVTEX, 2 postscript figures, text and figures available at
http://www.krl.caltech.edu/preprints/MAP.htm
Partonic flow and -meson production in Au+Au collisions at = 200 GeV
We present first measurements of the -meson elliptic flow
() and high statistics distributions for different
centralities from = 200 GeV Au+Au collisions at RHIC. In
minimum bias collisions the of the meson is consistent with the
trend observed for mesons. The ratio of the yields of the to those of
the as a function of transverse momentum is consistent with a model
based on the recombination of thermal quarks up to GeV/,
but disagrees at higher momenta. The nuclear modification factor () of
follows the trend observed in the mesons rather than in
baryons, supporting baryon-meson scaling. Since -mesons are
made via coalescence of seemingly thermalized quarks in central Au+Au
collisions, the observations imply hot and dense matter with partonic
collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR
Measurement of open charm production in +Au collisions at =200 GeV
We present the first comprehensive measurement of and
their charge conjugate states at mid-rapidity in +Au collisions at
=200 GeV using the STAR TPC. The directly measured open charm
multiplicity distribution covers a broad transverse momentum region of
0 GeV/. The measured at mid-rapidity for is
and the measured
and ratios are approximately equal with a magnitude of . The total cross section per
nucleon-nucleon collision extracted from this study is mb. The direct measurement of open charm production is
consistent with STAR single electron data. This cross section is higher than
expectations from PYTHIA and other pQCD calculations. The measured
distribution is harder than the pQCD prediction using the Peterson
fragmentation function.Comment: Quark Matter 2004 Proceeding
Measurement of the Bottom contribution to non-photonic electron production in collisions at =200 GeV
The contribution of meson decays to non-photonic electrons, which are
mainly produced by the semi-leptonic decays of heavy flavor mesons, in
collisions at 200 GeV has been measured using azimuthal
correlations between non-photonic electrons and hadrons. The extracted
decay contribution is approximately 50% at a transverse momentum of GeV/. These measurements constrain the nuclear modification factor for
electrons from and meson decays. The result indicates that meson
production in heavy ion collisions is also suppressed at high .Comment: 6 pages, 4 figures, accepted by PR
Azimuthal anisotropy: the higher harmonics
We report the first observations of the fourth harmonic (v_4) in the
azimuthal distribution of particles at RHIC. The measurement was done taking
advantage of the large elliptic flow generated at RHIC. The integrated v_4 is
about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8)
harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding
Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV
We present the first measurement of directed flow () at RHIC. is
found to be consistent with zero at pseudorapidities from -1.2 to 1.2,
then rises to the level of a couple of percent over the range . The latter observation is similar to data from NA49 if the SPS rapidities
are shifted by the difference in beam rapidity between RHIC and SPS.
Back-to-back jets emitted out-of-plane are found to be suppressed more if
compared to those emitted in-plane, which is consistent with {\it jet
quenching}. Using the scalar product method, we systematically compared
azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow
from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators
We review our recent work on tunable, ultrahigh quality factor
whispering-gallery-mode bottle microresonators and highlight their applications
in nonlinear optics and in quantum optics experiments. Our resonators combine
ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume,
and near-lossless fiber coupling, with a simple and customizable mode structure
enabling full tunability. We study, theoretically and experimentally, nonlinear
all-optical switching via the Kerr effect when the resonator is operated in an
add-drop configuration. This allows us to optically route a single-wavelength
cw optical signal between two fiber ports with high efficiency. Finally, we
report on progress towards strong coupling of single rubidium atoms to an
ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B.
Changes according to referee suggestions: minor corrections to some figures
and captions, clarification of some points in the text, added references,
added new paragraph with results on atom-resonator interactio
Plasma Wakefield Acceleration with a Modulated Proton Bunch
The plasma wakefield amplitudes which could be achieved via the modulation of
a long proton bunch are investigated. We find that in the limit of long bunches
compared to the plasma wavelength, the strength of the accelerating fields is
directly proportional to the number of particles in the drive bunch and
inversely proportional to the square of the transverse bunch size. The scaling
laws were tested and verified in detailed simulations using parameters of
existing proton accelerators, and large electric fields were achieved, reaching
1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found
in this case.Comment: 9 pages, 7 figure
- …
