11 research outputs found
A family case of fertile human 45,X,psu dic(15;Y) males
We report on a familial case including four male probands from three generations with a 45,X,psu dic(15;Y)(p11.2;q12) karyotype. 45,X is usually associated with a female phenotype and only rarely with maleness, due to translocation of small Y chromosomal fragments to autosomes. These male patients are commonly infertile because of missing azoospermia factor regions from the Y long arm. In our familial case we found a pseudodicentric translocation chromosome, that contains almost the entire chromosomes 15 and Y. The translocation took place in an unknown male ancestor of our probands and has no apparent effect on fertility and phenotype of the carrier. FISH analysis demonstrated the deletion of the pseudoautosomal region 2 (PAR2) from the Y chromosome and the loss of the nucleolus organizing region (NOR) from chromosome 15. The formation of the psu dic(15;Y) chromosome is a reciprocal event to the formation of the satellited Y chromosome (Yqs). Statistically, the formation of 45,X,psu dic(15;Y) (p11.2;q12) is as likely as the formation of Yqs. Nevertheless, it has not been described yet. This can be explained by the dicentricity of this translocation chromosome that usually leads to mitotic instability and meiotic imbalances. A second event, a stable inactivation of one of the two centromeres is obligatory to enable the transmission of the translocation chromosome and thus a stably reduced chromosome number from father to every son in this family
CADM1 is a strong neuroblastoma candidate gene that maps within a 3.72 Mb critical region of loss on 11q23
<p>Abstract</p> <p>Background</p> <p>Recurrent loss of part of the long arm of chromosome 11 is a well established hallmark of a subtype of aggressive neuroblastomas. Despite intensive mapping efforts to localize the culprit 11q tumour suppressor gene, this search has been unsuccessful thus far as no sufficiently small critical region could be delineated for selection of candidate genes.</p> <p>Methods</p> <p>To refine the critical region of 11q loss, the chromosome 11 status of 100 primary neuroblastoma tumours and 29 cell lines was analyzed using a BAC array containing a chromosome 11 tiling path. For the genes mapping within our refined region of loss, meta-analysis on published neuroblastoma mRNA gene expression datasets was performed for candidate gene selection. The DNA methylation status of the resulting candidate gene was determined using re-expression experiments by treatment of neuroblastoma cells with the demethylating agent 5-aza-2'-deoxycytidine and bisulphite sequencing.</p> <p>Results</p> <p>Two small critical regions of loss within 11q23 at chromosomal band 11q23.1-q23.2 (1.79 Mb) and 11q23.2-q23.3 (3.72 Mb) were identified. In a first step towards further selection of candidate neuroblastoma tumour suppressor genes, we performed a meta-analysis on published expression profiles of 692 neuroblastoma tumours. Integration of the resulting candidate gene list with expression data of neuroblastoma progenitor cells pinpointed <it>CADM1 </it>as a compelling candidate gene. Meta-analysis indicated that <it>CADM1 </it>expression has prognostic significance and differential expression for the gene was noted in unfavourable neuroblastoma versus normal neuroblasts. Methylation analysis provided no evidence for a two-hit mechanism in 11q deleted cell lines.</p> <p>Conclusion</p> <p>Our study puts <it>CADM1 </it>forward as a strong candidate neuroblastoma suppressor gene. Further functional studies are warranted to elucidate the role of <it>CADM1 </it>in neuroblastoma development and to investigate the possibility of <it>CADM1 </it>haploinsufficiency in neuroblastoma.</p
A clinical follow-up of 35 Brazilian patients with Prader-Willi Syndrome
OBJECTIVE: Prader-Willi Syndrome is a common etiology of syndromic obesity that is typically caused by either a paternal microdeletion of a region in chromosome 15 (microdeletions) or a maternal uniparental disomy of this chromosome. The purpose of this study was to describe the most significant clinical features of 35 Brazilian patients with molecularly confirmed Prader-Willi syndrome and to determine the effects of growth hormone treatment on clinical outcomes. METHODS: A retrospective study was performed based on the medical records of a cohort of 35 patients diagnosed with Prader-Willi syndrome. The main clinical characteristics were compared between the group of patients presenting with microdeletions and the group presenting with maternal uniparental disomy of chromosome 15. Curves for height/length, weight and body mass index were constructed and compared between Prader-Willi syndrome patients treated with and without growth hormone to determine how growth hormone treatment affected body composition. The curves for these patient groups were also compared with curves for the normal population. RESULTS: No significant differences were identified between patients with microdeletions and patients with maternal uniparental disomy for any of the clinical parameters measured. Growth hormone treatment considerably improved the control of weight gain and body mass index for female patients but had no effect on either parameter in male patients. Growth hormone treatment did not affect height/length in either gender. CONCLUSION: The prevalence rates of several clinical features in this study are in agreement with the rates reported in the literature. Additionally, we found modest benefits of growth hormone treatment but failed to demonstrate differences between patients with microdeletions and those with maternal uniparental disomy. The control of weight gain in patients with Prader-Willi syndrome is complex and does not depend exclusively on growth hormone treatment
A Case of Angelman Syndrome Representing with Myoclonic Status Successfully Treated with Phenobarbital
Heterogeneous seizure manifestations in Hypomelanosis of Ito: report of four new cases and review of the literature
Abnormal pigmentation in hypomelanosis of Ito and pigmentary mosaicism: the role of pigmentary genes
The role of genetic and epigenetic alterations in neuroblastoma disease pathogenesis
Neuroblastoma is a highly heterogeneous tumor accounting for 15 % of all pediatric cancer deaths. Clinical behavior ranges from the spontaneous regression of localized, asymptomatic tumors, as well as metastasized tumors in infants, to rapid progression and resistance to therapy. Genomic amplification of the MYCN oncogene has been used to predict outcome in neuroblastoma for over 30 years, however, recent methodological advances including miR-NA and mRNA profiling, comparative genomic hybridization (array-CGH), and whole-genome sequencing have enabled the detailed analysis of the neuroblastoma genome, leading to the identification of new prognostic markers and better patient stratification. In this review, we will describe the main genetic factors responsible for these diverse clinical phenotypes in neuroblastoma, the chronology of their discovery, and the impact on patient prognosis
