19,597 research outputs found
Massive scalar fields in the early Universe
We discuss the role of gravitational excitons/radions in different
cosmological scenarios. Gravitational excitons are massive moduli fields which
describe conformal excitations of the internal spaces and which, due to their
Planck-scale suppressed coupling to matter fields, are WIMPs. It is
demonstrated that, depending on the concrete scenario, observational
cosmological data set strong restrictions on the allowed masses and initial
oscillation amplitudes of these particles.Comment: 6 pages, Latex2e, talk presented at the 1st International Workshop on
Astronomy and Relativistic Astrophysics, 12-16 October, 2003, (IWARA2003),
Olinda-PE, Brazi
Sterile neutrino dark matter in warped extra dimensions
We consider a (long-lived) sterile neutrino dark matter scenario in a five
dimensional (5D) warped extra dimension model where the fields can live in the
bulk, which is partly motivated from the absence of the absolutely stable
particles in a simple Randall-Sundrum model. The dominant production of the
sterile neutrino can come from the decay of the radion (the scalar field
representing the brane separation) around the electroweak scale. The
suppressions of the 4D parameters due to the warp factor and the small wave
function overlaps in the extra dimension help alleviate the exceeding
fine-tunings typical for a sterile neutrino dark matter scenario in a 4D setup.Comment: Typos corrected and references adde
Pseudo-Dirac Bino Dark Matter
While the bino-dominated lightest neutralino of the minimal supersymmetric
Standard Model (MSSM) is an interesting and widely-studied candidate of the
dark matter, the p-wave suppression of its annihilation cross section requires
fine-tunings of the MSSM spectra to be consistent with WMAP observations. We
propose pseudo-Dirac bino that arises in theories with D-type
supersymmetry-breaking as an intriguing alternative candidate of dark matter.
The pseudo-Dirac nature of the bino gives a natural mechanism of enhanced
co-annihilation because these two states are degenerate in the absence of
electroweak symmetry breaking. In addition, the lightest state can be
consistent with limits of direct detection experiments because of the lack of
vector interactions, as with the case of the MSSM bino.Comment: 18 pages, 2 figures, REVTEX, to be published in PRD, made minor
changes and added comments to match the published versio
Velocity and Distribution of Primordial Neutrinos
The Cosmic Neutrinos Background (\textbf{CNB}) are Primordial Neutrinos
decoupled when the Universe was very young. Its detection is complicated,
especially if we take into account neutrino mass and a possible breaking of
Lorentz Invariance at high energy, but has a fundamental relevance to study the
Big-Bang. In this paper, we will see that a Lorentz Violation does not produce
important modification, but the mass does. We will show how the neutrinos
current velocity, with respect to comobile system to Universe expansion, is of
the order of 1065 , much less than light velocity. Besides, we
will see that the neutrinos distribution is complex due to Planetary motion.
This prediction differs totally from the usual massless case, where we would
get a correction similar to the Dipolar Moment of the \textbf{CMB}.Comment: 16 pages, latex, 7 figure
Constraints on parameters of models with extra dimension from primordial nucleosynthesis
5D models with one 3D brane and one infinite extra dimension are studied.
Matter is confined to the brane, gravity extends to the bulk. Models with
positive and negative tension of the brane are studied. Cosmological solutions
on the brane are obtained by solving the generalized Friedmann equation. As the
input in cosmological solutions we use the present-time observational
cosmological parameters. We find constraints on dimensionless combinations of
scales of 5D models which follow from the requirement that the models reproduce
the data on production of in primordial nucleosynthesis.Comment: 12 page
Interaction of cosmic background neutrinos with matter of periodic structure
We study coherent interaction of cosmic background neutrinos(CBNs) with
matter of periodic structure. The mixing and small masses of neutrinos
discovered in neutrino oscillation experiments indicate that CBNs which have
very low energy today should be in mass states and can transform from one mass
state to another in interaction with electrons in matter. We show that in a
coherent scattering process a periodic matter structure designed to match the
scale of the mass square difference of neutrinos can enhance the conversion of
CBNs from one mass state to another. Energy of CBNs can be released in this
scattering process and momentum transfer from CBNs to electrons in target
matter can be obtained.Comment: 6 pages, 5 figures, publication versio
Singlino dominated LSP as CDM candidate in supersymmetric models with an extra U(1)
We consider a singlino dominated neutralino in supersymmetric models with an
extra U(1). In case both the term and also the mass are
generated by the vacuum expectation value of the scalar component of the same
singlet chiral superfield, generically the lightest neutralino is not expected
to be dominated by the singlino. However, if the gaugino corresponding to the
extra U(1) is sufficiently heavy, the lightest neutralino can be dominated by
the singlino and still satisfy the constraints resulting from the
phenomenology. We assume a supersymmetry breaking scenario in which the extra
U(1) gaugino can be much heavier than other gauginos. In that framework we show
that the singlino dominated lightest neutralino may be a good candidate for
dark matter in a parameter space where various phenomenological constraints are
satisfied.Comment: 25 pages, 6 figures, title is changed, introduction is extended,
sec.2 is moved to appendix, some references are added, published versio
Changes in Dark Matter Properties After Freeze-Out
The properties of the dark matter that determine its thermal relic abundance
can be very different from the dark matter properties today. We investigate
this possibility by coupling a dark matter sector to a scalar that undergoes a
phase transition after the dark matter freezes out. If the value of Omega_DM
h^2 calculated from parameters measured at colliders and by direct and indirect
detection experiments does not match the astrophysically observed value, a
novel cosmology of this type could provide the explanation. This mechanism also
has the potential to account for the "boost factor" required to explain the
PAMELA data.Comment: 5 pages; v2: Fixed minor typo, added short discussion of application
to PAMELA and appropriate references, results unchange
130 GeV gamma-ray line and enhancement of in the Higgs triplet model plus a scalar dark matter
With a discrete symmetry being imposed, we introduce a real singlet
scalar to the Higgs triplet model with the motivation of explaining the
tentative evidence for a spectral feature at = 130 GeV in the Fermi
LAT data. The model can naturally satisfy the experimental constraints of the
dark matter relic density and direct detection data from Xenon100. The doubly
charged and one charged scalars can enhance the annihilation cross section of
via the one-loop contributions, and give the negligible
contributions to the relic density. for
GeV can reach \ord(1)\times10^{-27} cm^3 s^{-1} for the small
charged scalar masses and the coupling constant of larger than 1. Besides, this
model also predict a second photon peak at 114 GeV from the annihilation
, and the cross section is approximately 0.76 times that of
, which is below the upper limit reported by Fermi LAT.
Finally, the light charged scalars can enhance LHC diphoton Higgs rate, and
make it to be consistent with the experimental data reported by ATLAS and CMS.Comment: 15 pages, 4 figure
GUT baryogenesis after preheating: numerical study of the production and decay of X-bosons
We perform a fully non-linear calculation of the production of supermassive
Grand Unified Theory (GUT) bosons during preheating, taking into account
the fact that they are unstable with a decay width . We show that
parametric resonance does not develop if is larger than about
. We compute the nonthermal number density of superheavy bosons
produced in the preheating phase and demonstrate that the observed baryon
asymmetry may be explained by GUT baryogenesis after preheating if
is smaller than about .Comment: 13 pages, LaTeX file, 3 figures. One reference added and minor
change
- …
