1,640 research outputs found

    Extended inflation from higher dimensional theories

    Get PDF
    The possibility is considered that higher dimensional theories may, upon reduction to four dimensions, allow extended inflation to occur. Two separate models are analayzed. One is a very simple toy model consisting of higher dimensional gravity coupled to a scalar field whose potential allows for a first-order phase transition. The other is a more sophisticated model incorporating the effects of non-trivial field configurations (monopole, Casimir, and fermion bilinear condensate effects) that yield a non-trivial potential for the radius of the internal space. It was found that extended inflation does not occur in these models. It was also found that the bubble nucleation rate in these theories is time dependent unlike the case in the original version of extended inflation

    False-vacuum decay in generalized extended inflation

    Get PDF
    False-vacuum decay was studied in context of generalized extended inflationary theories, and the bubble nucleation rates was computed for these theories in the limit of G(sub N) yields 0. It was found that the time dependence of the nucleation rate can be exponentially strong through the time dependence of the Jordan-Brans-Dicke field. This can have a pronounced effect on whether extended inflation can be successfully implemented

    On the Search for the Amino Acids on the Lunar Surface as it Relates to Other Extraterrestrial Bodies

    Get PDF
    The early search for the amino acids on the lunar surface fines indicated such a low amount of the amino acids that it was deemed insignifi cant. While the later studies seemed to depart in some ways from the earlier results, they were not pursued. In this paper we critically ev aluate the results from the Apollo missions from the new perspective with considerations of the sensitivity of the instrumentation availabl e at the time. We discuss the possible relevance of the lunar results to the findings of the amino acids on the surfaces of other extraterrestrial bodies, such as Mars

    False vacuum decay in Jordan-Brans-Dicke cosmologies

    Get PDF
    The bubble nucleation rate in a first-order phase transition taking place in a background Jordan-Brans-Dicke cosmology is examined. The leading order terms in the nucleation rate when the Jordan-Brans-Dicke field is large (i.e., late times) are computed by means of a Weyl rescaling of the fields in the theory. It is found that despite the fact that the Jordan-Brans-Dicke field (hence the effective gravitational constant) has a time dependence in the false vacuum at late times the nucleation rate is time independent

    Statistical mechanics of soft-boson phase transitions

    Get PDF
    The existence of structure on large (100 Mpc) scales, and limits to anisotropies in the cosmic microwave background radiation (CMBR), have imperiled models of structure formation based solely upon the standard cold dark matter scenario. Novel scenarios, which may be compatible with large scale structure and small CMBR anisotropies, invoke nonlinear fluctuations in the density appearing after recombination, accomplished via the use of late time phase transitions involving ultralow mass scalar bosons. Herein, the statistical mechanics are studied of such phase transitions in several models involving naturally ultralow mass pseudo-Nambu-Goldstone bosons (pNGB's). These models can exhibit several interesting effects at high temperature, which is believed to be the most general possibilities for pNGB's

    Is sunlight good for our heart?

    Get PDF
    Humans evolved being exposed for about half of the day to the light of the sun. Nowadays, exposure to sunlight is actively discouraged for fear of skin cancer, and contemporary lifestyles are associated with long hours spent under artificial light indoors. Besides an increasing appreciation for the adverse effects of these life-style-related behavioural changes on our chronobiology, the balance between the beneficial and harmful effects of sunlight on human health is the subject of considerable debate, in both the scientific and popular press, and the latter is of major public health significance. While there is incontrovertible evidence that ultraviolet radiation (UVR) in the form of sunlight is a significant predisposing factor for non-melanoma and melanoma skin cancers in pale skinned people,1 a growing body of data suggest general health benefits brought about by sunlight.2 These are believed to be mediated either by melatonin or vitamin D. Melatonin is produced from serotonin by the pineal gland located in the centre of the brain during periods of darkness, and its release is suppressed as a function of the visible light intensity sensed through ocular photoreceptors. Vitamin D is formed by ultraviolet B (UVB)-mediated photolysis of 7-dehydrocholesterol in the skin. Both melatonin and vitamin D are pleiotropic hormones that exert a multitude of cellular effects by interacting with membrane and nuclear receptors, and receptor-independent actions. People with more heavily pigmented skin require higher doses of UVB to produce adequate amounts of vitamin D, and this may have been an evolutionary driver to the variation of human skin colour with latitude and intensity of solar irradiation. Our degree of exposure to sunlight is easily modified by behavioural factors such as the use of clothing, sunglasses, and sun-blocking creams, and time spent outdoors. Balancing the carcinogenic risks with the requirement for vitamin D has led to advice on moderating sun exposure, while supplementing food with vitamin D. Guidance on such behaviour is part of the public health campaigns in most countries with Caucasian populations. Following these suggestions, we may, however, be missing out on other health benefits provided by natural sunlight that are less obvious and unrelated to the above classical mediators

    Neutrinos and Future Concordance Cosmologies

    Full text link
    We review the free parameters in the concordance cosmology, and those which might be added to this set as the quality of astrophysical data improves. Most concordance parameters encode information about otherwise unexplored aspects of high energy physics, up to the GUT scale via the "inflationary sector," and possibly even the Planck scale in the case of dark energy. We explain how neutrino properties may be constrained by future astrophysical measurements. Conversely, future neutrino physics experiments which directly measure these parameters will remove uncertainty from fits to astrophysical data, and improve our ability to determine the global properties of our universe.Comment: Proceedings of paper given at Neutrino 2008 meeting (by RE

    CBR Anisotropy from Primordial Gravitational Waves in Two-Component Inflationary Cosmology

    Full text link
    We examine stochastic temperature fluctuations of the cosmic background radiation (CBR) arising via the Sachs-Wolfe effect from gravitational wave perturbations produced in the early universe. We consider spatially flat, perturbed FRW models that begin with an inflationary phase, followed by a mixed phase containing both radiation and dust. The scale factor during the mixed phase takes the form a(η)=c1η2+c2η+c3a(\eta)=c_1\eta^2+c_2\eta+c_3, where cic_i are constants. During the mixed phase the universe smoothly transforms from being radiation to dust dominated. We find analytic expressions for the graviton mode function during the mixed phase in terms of spheroidal wave functions. This mode function is used to find an analytic expression for the multipole moments al2\langle a_l^2\rangle of the two-point angular correlation function C(γ)C(\gamma) for the CBR anisotropy. The analytic expression for the multipole moments is written in terms of two integrals, which are evaluated numerically. The results are compared to multipoles calculated for models that are {\it completely} dust dominated at last-scattering. We find that the multipoles al2\langle a_l^2\rangle of the CBR temperature perturbations for l>10l>10 are significantly larger for a universe that contains both radiation and dust at last-scattering. We compare our results with recent, similar numerical work and find good agreement. The spheroidal wave functions may have applications to other problems of cosmological interest.Comment: 28 pgs + 6 postscript figures, RevTe

    Dark matter constraints on the parameter space and particle spectra in the nonminimal SUSY standard model

    Get PDF
    We investigate the dark matter constraints for the nonminimal SUSY standard model (NMSSM). The cosmologically restricted mass spectra of the NMSSM are compared to the minimal SUSY standard model (MSSM). The differences of the two models concerning the neutralino, sfermion and Higgs sector are discussed. The dark matter condition leads to cosmologically allowed mass ranges for the SUSY particles in the NMSSM: m_{\tilde{\chi}^0_1} < 300 GeV, m_{\tilde{e}_R} < 300 GeV, 300 GeV < m_{\tilde{u}_R} < 1900 GeV, 200 GeV < m_{\tilde{t}_1} < 1500 GeV, 350 GeV < m_{\tilde{g}} < 2100 GeV and for the mass of the lightest scalar Higgs m_{S_1} < 140 GeV.Comment: revised version to appear in Phys. Lett. B, 18 pages, LaTeX, 3 figures, uses epsfig.sty and amssymb.st

    Cosmological expansion on a dilatonic brane-world

    Get PDF
    In this paper we study brane-world scenarios with a bulk scalar field, using a covariant formalism to obtain a 4D Einstein equation via projection onto the brane. We discuss, in detail, the effects of the bulk on the brane and how the scalar field contribute to the gravitational effects. We also discuss choice of conformal frame and show that the frame selected by the induced metric provides a natural choice. We demonstrate our formalism by applying it to cosmological scenarios of Randall-Sundrum and Horava-Witten type models. Finally we consider the cosmology of models where the scalar field couples non-minimally to the matter on the brane. This gives rise to a novel scenario where the universe expands from a finite scale factor with an initial period of accelerated expansion, thus avoiding the singularity and flatness problem of the standard big bang model.Comment: 20 pages - Version to appear in Classical and Quantum Gravity. New section added on conformal rescaling of the metric. Some other minor changes made and references adde
    corecore