3,433 research outputs found

    The mobile Boolean model: an overview and further results

    Get PDF
    This paper offers an overview of the mobile Boolean stochastic geometric model which is a time-dependent version of the ordinary Boolean model in a Euclidean space of dimension dd. The main question asked is that of obtaining the law of the detection time of a fixed set. We give various ways of thinking about this which result into some general formulas. The formulas are solvable in some special cases, such the inertial and Brownian mobile Boolean models. In the latter case, we obtain some expressions for the distribution of the detection time of a ball, when the dimension dd is odd and asymptotics when dd is even. Finally, we pose some questions for future research.Comment: 19 page

    Convergence to the Tracy-Widom distribution for longest paths in a directed random graph

    Get PDF
    We consider a directed graph on the 2-dimensional integer lattice, placing a directed edge from vertex (i1,i2)(i_1,i_2) to (j1,j2)(j_1,j_2), whenever i1j1i_1 \le j_1, i2j2i_2 \le j_2, with probability pp, independently for each such pair of vertices. Let Ln,mL_{n,m} denote the maximum length of all paths contained in an n×mn \times m rectangle. We show that there is a positive exponent aa, such that, if m/na1m/n^a \to 1, as nn \to \infty, then a properly centered/rescaled version of Ln,mL_{n,m} converges weakly to the Tracy-Widom distribution. A generalization to graphs with non-constant probabilities is also discussed.Comment: 20 pages, 2 figure

    Incorporating Cost in Power Analysis for Three-Level Cluster Randomized Designs

    Get PDF
    In experimental designs with nested structures entire groups (such as schools) are often assigned to treatment conditions. Key aspects of the design in these cluster randomized experiments include knowledge of the intraclass correlation structure and the sample sizes necessary to achieve adequate power to detect the treatment effect. However, the units at each level of the hierarchy have a cost associated with them and thus researchers need to decide on sample sizes given a certain budget, when designing their studies. This paper provides methods for computing power within an optimal design framework (that incorporates costs of units in all three levels) for three-level cluster randomized balanced designs with two levels of nesting. The optimal sample sizes are a function of the variances at each level and the cost of each unit. Overall, larger effect sizes, smaller intraclass correlations at the second and third level, and lower cost of level-3 and level-2 units result in higher estimates of power.experimental design, statistical power, optimal sampling

    Fixed Effects and Variance Components Estimation in Three-Level Meta-Analysis

    Get PDF
    Meta-analytic methods have been widely applied to education, medicine, and the social sciences. Much of meta-analytic data are hierarchically structured since effect size estimates are nested within studies, and in turn studies can be nested within level-3 units such as laboratories or investigators, and so forth. Thus, multilevel models are a natural framework for analyzing meta-analytic data. This paper discusses the application of a Fisher scoring method in two- and three-level meta-analysis that takes into account random variation at the second and at the third levels. The usefulness of the model is demonstrated using data that provide information about school calendar types. SAS proc mixed and HLM can be used to compute the estimates of fixed effects and variance components.meta-analysis, multilevel models, random effects

    Stationary flows and uniqueness of invariant measures

    Get PDF
    In this short paper, we consider a quadruple (Ω,A˚,θ,μ)(\Omega, \AA, \theta, \mu),where A˚\AA is a σ\sigma-algebra of subsets of Ω\Omega, and θ\theta is a measurable bijection from Ω\Omega into itself that preserves the measure μ\mu. For each BA˚B \in \AA, we consider the measure μB\mu_B obtained by taking cycles (excursions) of iterates of θ\theta from BB. We then derive a relation for μB\mu_B that involves the forward and backward hitting times of BB by the trajectory (θnω,nZ)(\theta^n \omega, n \in \Z) at a point ωΩ\omega \in \Omega. Although classical in appearance, its use in obtaining uniqueness of invariant measures of various stochastic models seems to be new. We apply the concept to countable Markov chains and Harris processes
    corecore