60 research outputs found

    Molecular analysis of enrichment cultures of ammonia oxidizers from the Salar de Huasco, a high altitude saline wetland in northern Chile

    Get PDF
    We analyzed enrichment cultures of ammonia-oxidizing bacteria (AOB) collected from different areas of Salar de Huasco, a high altitude, saline, pH-neutral water body in the Chilean Altiplano. Samples were inoculated into mineral media with 10 mM NH4+ at five different salt concentrations (10, 200, 400, 800 and 1,400 mM NaCl). Low diversity (up to three phylotypes per enrichment) of beta-AOB was detected using 16S rDNA and amoA clone libraries. Growth of beta-AOB was only recorded in a few enrichment cultures and varied according to site or media salinity. In total, five 16S rDNA and amoA phylotypes were found which were related to Nitrosomonas europaea/Nitrosococcus mobilis, N. marina and N. communis clusters. Phylotype 1-16S was 97% similar with N. halophila, previously isolated from Mongolian soda lakes, and phylotypes from amoA sequences were similar with yet uncultured beta-AOB from different biofilms. Sequences related to N. halophila were frequently found at all salinities. Neither gamma-AOB nor ammonia-oxidizing Archaea were recorded in these enrichment cultures

    Protocol for the CUPIDO trials; multicenter randomized controlled trials to assess the value of combining prolapse surgery and incontinence surgery in patients with genital prolapse and evident stress incontinence (CUPIDO I) and in patients with genital prolapse and occult stress incontinence (CUPIDO II)

    Get PDF
    Background: About 40% of all patients with genital prolapse report stress-incontinence. In about half of the 60% patients that do not report stress-incontinence, occult urinary stress-incontinence can be detected. In these patients stress-incontinence is masked due to kinking or compression of the urethra by the prolapse. In case surgical correction is indicated there are two strategies to manage patients with combined prolapse and (occult) stress incontinence. This strategy is either (i) a combination of prolapse surgery and stress-incontinence surgery or (ii) to correct the prolapse first and evaluate afterwards whether additional stress-incontinence surgery is indicated. The advantage of combining prolapse and stress-incontinence surgery is that only few patients report stress-incontinence following such combination. However, this combination has been associated with an increased risk on complications, of which the development of obstructive micturition symptoms, overactive bladder symptoms and bladder retention are the most important ones. Furthermore, combining two procedures may be unnecessary as performing only prolapse surgery may cure stress-incontinence In the randomized CUPIDO trials both strategies are compared in patients with prolapse and evident stress incontinence (CUPIDO I trial) and in patients with prolapse and occult stress incontinence (CUPIDO II trial). Methods/Design: The CUPIDO trials are two multicenter randomized controlled trials in which women with stress urinary incontinence (SUI) or occult stress urinary incontinence (OSUI) are randomized to prolapse surgery combined with anti incontinence surgery (concomitant surgery) or to prolapse surgery only. Patients with at least stage 2 POP are eligible, women with evident SUI are randomized in CUPIDO I. Patients without SUI are eligible for CUPIDO II and will have urodynamic evaluation or a standardized redression test. Women with OSUI are randomized, women without OSUI are followed up but not randomized. The primary outcome measure is absence of SUI twelve months after surgery. Furthermore, economic evaluations are conducted, and the effectiveness of urodynamic investigation is evaluated against a non-invasive way to determine SUI in women with POP. A total of 450 women will be included in the study

    Oligomeric Coiled-Coil Adhesin YadA Is a Double-Edged Sword

    Get PDF
    Yersinia adhesin A (YadA) is an essential virulence factor for the food-borne pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis. Suprisingly, it is a pseudogene in Yersinia pestis. Even more intriguing, the introduction of a functional yadA gene in Y. pestis EV76 was shown to correlate with a decrease in virulence in a mouse model. Here, we report that wild type (wt) Y. enterocolitica E40, as well as YadA-deprived E40 induced the synthesis of neutrophil extracellular traps (NETs) upon contact with neutrophils, but only YadA-expressing Y. enterocolitica adhered to NETs and were killed. As binding seemed to be a prerequisite for killing, we searched for YadA-binding substrates and detected the presence of collagen within NETs. E40 bacteria expressing V98D,N99A mutant YadA with a severely reduced ability to bind collagen were found to be more resistant to killing, suggesting that collagen binding contributes significantly to sensitivity to NETs. Wt Y. pestis EV76 were resistant to killing by NETs, while recombinant EV76 expressing YadA from either Y. pseudotuberculosis or Y. enterocolitica were sensitive to killing by NETs, outlining the importance of YadA for susceptibility to NET-dependent killing. Recombinant EV76 endowed with YadA from Y. enterocolitica were also less virulent for the mouse than wt EV76, as shown before. In addition, EV76 carrying wt YadA were less virulent for the mouse than EV76 expressing YadAV98D,N99A. The observation that YadA makes Yersinia sensitive to NETs provides an explanation as for why evolution selected for the inactivation of yadA in the flea-borne Y. pestis and clarifies an old enigma. Since YadA imposes the same cost to the food-borne Yersinia but was nevertheless conserved by evolution, this observation also illustrates the duality of some virulence functions

    Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment

    Get PDF
    The oxidation of ammonia plays a significant role in the transformation of fixed nitrogen in the global nitrogen cycle. Autotrophic ammonia oxidation is known in three groups of microorganisms. Aerobic ammonia-oxidizing bacteria and archaea convert ammonia into nitrite during nitrification. Anaerobic ammonia-oxidizing bacteria (anammox) oxidize ammonia using nitrite as electron acceptor and producing atmospheric dinitrogen. The isolation and cultivation of all three groups in the laboratory are quite problematic due to their slow growth rates, poor growth yields, unpredictable lag phases, and sensitivity to certain organic compounds. Culture-independent approaches have contributed importantly to our understanding of the diversity and distribution of these microorganisms in the environment. In this review, we present an overview of approaches that have been used for the molecular study of ammonia oxidizers and discuss their application in different environments
    corecore