14 research outputs found

    Utility Pole Fire Risk Inspection from 2D Street-Side Images

    Full text link
    In recent years, California's electrical grid has confronted mounting challenges stemming from aging infrastructure and a landscape increasingly susceptible to wildfires. This paper presents a comprehensive framework utilizing computer vision techniques to address wildfire risk within the state's electrical grid, with a particular focus on vulnerable utility poles. These poles are susceptible to fire outbreaks or structural failure during extreme weather events. The proposed pipeline harnesses readily available Google Street View imagery to identify utility poles and assess their proximity to surrounding vegetation, as well as to determine any inclination angles. The early detection of potential risks associated with utility poles is pivotal for forestalling wildfire ignitions and informing strategic investments, such as undergrounding vulnerable poles and powerlines. Moreover, this study underscores the significance of data-driven decision-making in bolstering grid resilience, particularly concerning Public Safety Power Shutoffs. By fostering collaboration among utilities, policymakers, and researchers, this pipeline aims to solidify the electric grid's resilience and safeguard communities against the escalating threat of wildfires

    Towards a data-driven and scalable approach for window operation detection in multi-family residential buildings

    Full text link
    Natural cooling, utilizing non-mechanical cooling, presents a low-carbon and low-cost way to provide thermal comfort in residential buildings. However, designing naturally cooled buildings requires a clear understanding of how opening and closing windows affect occupants' comfort. Predicting when and why occupants open windows is a challenging task, often relying on specialized sensors and building-specific training data. This limits the scalability of natural cooling solutions. Here, we, propose a novel unsupervised method that utilizes easily deployable off-the-shelf temperature and humidity sensors to detect window operations. The effectiveness of our approach is evaluated using an empirical dataset and compared with a state-of-the-art support vector machine (SVM) model. The results demonstrate that our proposed method outperforms the SVM on key indicators, except when indoor and outdoor temperatures have small differences. Unlike the SVM's sensitivity to time series characteristics, our proposed method relies solely on indoor temperature and exhibits robust performance in pilot studies, making it a promising candidate for developing a highly scalable and generalizable window operation detection model This work demonstrates the potential of unsupervised data-driven methods for understanding window operations in residential buildings. By enabling more accurate modeling of naturally cooled buildings, our work aims to facilitate the widespread adoption of this low-cost and low-carbon technology

    Natural ventilation versus air pollution: assessing the impact of outdoor pollution on natural ventilation potential in informal settlements in India

    No full text
    Abstract Despite the proven benefits of natural ventilation (NV) as an effective low-carbon solution to meet growing cooling demand, its effectiveness can be constrained by poor outdoor air quality. Here, we propose a modeling approach that integrates highly granular air pollution data with a coupled EnergyPlus and differential equation airflow model to evaluate how NV potential for space cooling changes when accounting for air pollution exposure (PM2.5). Given the high vulnerability of low-income populations to air pollution and the dearth of energy and thermal comfort research on informal settlements, we applied our model to a typical informal settlement residence in two large Indian cities: New Delhi and Bangalore. Our results indicate that outdoor PM2.5 levels have a significant impact on NV potential especially in highly polluted cities like New Delhi. However, we found that low-cost filtration (MERV 14) increased the NV potential by 25% and protected occupants from harmful exposure to PM2.5 with a minor energy penalty of 6%. We further find that adoption of low-cost filtration is a viable low-carbon solution pathway as it provides both thermal comfort and exposure protection at 65% less energy intensity — energy intensity reduced to 60 kWh/m2 from 173.5 kWh/m2 in case of adoption of potentially unaffordable full mechanical air conditioning. Our work highlights ample opportunities for reducing both air pollution and energy consumption in informal settlements across major Indian cities. Finally, our work can guide building designers and policymakers to reform building codes for adopting low-cost air filtration coupled with NV and subsequently reduce energy demand and associated environmental emissions.</jats:p

    Natural ventilation versus air pollution: assessing the impact of outdoor pollution on natural ventilation potential in informal settlements in India

    No full text
    Despite the proven benefits of natural ventilation (NV) as an effective low-carbon solution to meet growing cooling demand, its effectiveness can be constrained by poor outdoor air quality. Here, we propose a modeling approach that integrates highly granular air pollution data with a coupled EnergyPlus and differential equation airflow model to evaluate how NV potential for space cooling changes when accounting for air pollution exposure (PM2.5). Given the high vulnerability of low-income populations to air pollution and the dearth of energy and thermal comfort research on informal settlements, we applied our model to a typical informal settlement residence in two large Indian cities: New Delhi and Bangalore. Our results indicate that outdoor PM2.5 levels have a significant impact on NV potential especially in highly polluted cities like New Delhi. However, we found that low-cost filtration (MERV 14) increased the NV potential by 25% and protected occupants from harmful exposure to PM2.5 with a minor energy penalty of 6%. We further find that adoption of low-cost filtration is a viable low-carbon solution pathway as it provides both thermal comfort and exposure protection at 65% less energy intensity—energy intensity reduced to 60 kWh m ^−2 from 173.5 kWh m ^−2 in case of adoption of potentially unaffordable full mechanical air conditioning. Our work highlights ample opportunities for reducing both air pollution and energy consumption in informal settlements across major Indian cities. Finally, our work can guide building designers and policymakers to reform building codes for adopting low-cost air filtration coupled with NV and subsequently reduce energy demand and associated environmental emissions

    Nonresonant central exclusive production of charged-hadron pairs in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    The central exclusive production of charged-hadron pairs in pp collisions at a centre-of-mass energy of 13\TeV is examined, based on data collected in a special high-β\beta^* run of the LHC. The nonresonant continuum processes are studied with the invariant mass of the centrally produced two-pion system in the resonance-free region, mπ+πm_{\pi^+\pi^-}<\lt 0.7 GeV or mπ+πm_{\pi^+\pi^-}>\gt 1.8 GeV. Differential cross sections as functions of the azimuthal angle between the surviving protons, squared exchanged four-momenta, and mπ+πm_{\pi^+\pi^-} are measured in a wide region of scattered proton transverse momenta, between 0.2 and 0.8 GeV, and for pion rapidities y\lvert y\rvert<\lt 2. A rich structure of interactions related to double-pomeron exchange is observed. A parabolic minimum in the distribution of the two-proton azimuthal angle is observed for the first time. It can be interpreted as an effect of additional pomeron exchanges between the protons from the interference between the bare and the rescattered amplitudes. After model tuning, various physical quantities are determined that are related to the pomeron cross section, proton-pomeron and meson-pomeron form factors, pomeron trajectory and intercept, and coefficients of diffractive eigenstates of the proton

    Nonresonant central exclusive production of charged-hadron pairs in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe central exclusive production of charged-hadron pairs in pp collisions at a centre-of-mass energy of 13\TeV is examined, based on data collected in a special high-β\beta^* run of the LHC. The nonresonant continuum processes are studied with the invariant mass of the centrally produced two-pion system in the resonance-free region, mπ+πm_{\pi^+\pi^-}<\lt 0.7 GeV or mπ+πm_{\pi^+\pi^-}>\gt 1.8 GeV. Differential cross sections as functions of the azimuthal angle between the surviving protons, squared exchanged four-momenta, and mπ+πm_{\pi^+\pi^-} are measured in a wide region of scattered proton transverse momenta, between 0.2 and 0.8 GeV, and for pion rapidities y\lvert y\rvert<\lt 2. A rich structure of interactions related to double-pomeron exchange is observed. A parabolic minimum in the distribution of the two-proton azimuthal angle is observed for the first time. It can be interpreted as an effect of additional pomeron exchanges between the protons from the interference between the bare and the rescattered amplitudes. After model tuning, various physical quantities are determined that are related to the pomeron cross section, proton-pomeron and meson-pomeron form factors, pomeron trajectory and intercept, and coefficients of diffractive eigenstates of the proton

    Nonresonant central exclusive production of charged-hadron pairs in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe central exclusive production of charged-hadron pairs in pp collisions at a centre-of-mass energy of 13\TeV is examined, based on data collected in a special high-β\beta^* run of the LHC. The nonresonant continuum processes are studied with the invariant mass of the centrally produced two-pion system in the resonance-free region, mπ+πm_{\pi^+\pi^-}<\lt 0.7 GeV or mπ+πm_{\pi^+\pi^-}>\gt 1.8 GeV. Differential cross sections as functions of the azimuthal angle between the surviving protons, squared exchanged four-momenta, and mπ+πm_{\pi^+\pi^-} are measured in a wide region of scattered proton transverse momenta, between 0.2 and 0.8 GeV, and for pion rapidities y\lvert y\rvert<\lt 2. A rich structure of interactions related to double-pomeron exchange is observed. A parabolic minimum in the distribution of the two-proton azimuthal angle is observed for the first time. It can be interpreted as an effect of additional pomeron exchanges between the protons from the interference between the bare and the rescattered amplitudes. After model tuning, various physical quantities are determined that are related to the pomeron cross section, proton-pomeron and meson-pomeron form factors, pomeron trajectory and intercept, and coefficients of diffractive eigenstates of the proton

    Proton reconstruction with the TOTEM Roman pot detectors for high-β* LHC data

    No full text
    International audienceThe TOTEM Roman pot detectors are used to reconstruct thetransverse momentum of scattered protons and to estimate thetransverse location of the primary interaction. This paper presentsnew methods of track reconstruction, measurements of strip-leveldetection efficiencies, cross-checks of the LHC beam optics, anddetector alignment techniques, along with their application in theselection of signal collision events. The track reconstruction isperformed by exploiting hit cluster information through a novelmethod using a common polygonal area in the intercept-slopeplane. The technique is applied in the relative alignment ofdetector layers with μm precision. A tag-and-probe method isused to extract strip-level detection efficiencies. The alignment ofthe Roman pot system is performed through time-dependentadjustments, resulting in a position accuracy of 3 μm in thehorizontal and 60 μm in the vertical directions. The goal isto provide an optimal reconstruction tool for central exclusivephysics analyses based on the high-β* data-taking period at√(s) = 13 TeV in 2018

    Proton reconstruction with the TOTEM Roman pot detectors for high-β\beta^* LHC data

    No full text
    The TOTEM Roman pot detectors are used to reconstruct the transverse momentum of scattered protons and to estimate the transverse location of the primary interaction. This paper presents new methods of track reconstruction, measurements of strip-level detection efficiencies, cross-checks of the LHC beam optics, and detector alignment techniques, along with their application in the selection of signal collision events. The track reconstruction is performed by exploiting hit cluster information through a novel method using a common polygonal area in the intercept-slope plane. The technique is applied in the relative alignment of detector layers with μ\mum precision. A tag-and-probe method is used to extract strip-level detection efficiencies. The alignment of the Roman pot system is performed through time-dependent adjustments, resulting in a position accuracy of 3 μ\mum in the horizontal and 60 μ\mum in the vertical directions. The goal is to provide an optimal reconstruction tool for central exclusive physics analyses based on the high-β\beta^* data-taking period at s\sqrt{s} = 13 TeV in 2018

    Nonresonant central exclusive production of charged-hadron pairs in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    The central exclusive production of charged-hadron pairs in pp collisions at a centre-of-mass energy of 13 TeV is examined, based on data collected in a special high-β \beta^* run of the LHC. The nonresonant continuum processes are studied with the invariant mass of the centrally produced two-pion system in the resonance-free region, mπ+π m_{\pi^{+}\pi^{-}} 1.8 GeV. Differential cross sections as functions of the azimuthal angle between the surviving protons, squared exchanged four-momenta, and mπ+π m_{\pi^{+}\pi^{-}} are measured in a wide region of scattered proton transverse momenta, between 0.2 and 0.8 GeV, and for pion rapidities y< |y| < 2. A rich structure of interactions related to double-pomeron exchange is observed. A parabolic minimum in the distribution of the two-proton azimuthal angle is observed for the first time. It can be interpreted as an effect of additional pomeron exchanges between the protons from the interference between the bare and the rescattered amplitudes. After model tuning, various physical quantities are determined that are related to the pomeron cross section, proton-pomeron and meson-pomeron form factors, pomeron trajectory and intercept, and coefficients of diffractive eigenstates of the proton.The central exclusive production of charged-hadron pairs in pp collisions at a centre-of-mass energy of 13\TeV is examined, based on data collected in a special high-β\beta^* run of the LHC. The nonresonant continuum processes are studied with the invariant mass of the centrally produced two-pion system in the resonance-free region, mπ+πm_{\pi^+\pi^-}<\lt 0.7 GeV or mπ+πm_{\pi^+\pi^-}>\gt 1.8 GeV. Differential cross sections as functions of the azimuthal angle between the surviving protons, squared exchanged four-momenta, and mπ+πm_{\pi^+\pi^-} are measured in a wide region of scattered proton transverse momenta, between 0.2 and 0.8 GeV, and for pion rapidities y\lvert y\rvert<\lt 2. A rich structure of interactions related to double-pomeron exchange is observed. A parabolic minimum in the distribution of the two-proton azimuthal angle is observed for the first time. It can be interpreted as an effect of additional pomeron exchanges between the protons from the interference between the bare and the rescattered amplitudes. After model tuning, various physical quantities are determined that are related to the pomeron cross section, proton-pomeron and meson-pomeron form factors, pomeron trajectory and intercept, and coefficients of diffractive eigenstates of the proton
    corecore