71 research outputs found
Shear stress induces osteogenic differentiation of human mesenchymal stem cells
Aim: To determine whether fluid flow-induced shear stress affects the differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs) into osteogenic cells. Materials & methods: hMSCs cultured with or without osteogenic differentiation medium were exposed to fluid flow-induced shear stress and analyzed for alkaline phosphatase activity and expression of osteogenic genes. Results: Immediately following shear stress, alkaline phosphatase activity in osteogenic medium was significantly increased. At days 4 and 8 of culture the mRNA expression of bone morphogenetic protein-2 and osteopontin was significantly higher in hMSCs subjected to shear stress than those cultured in static conditions. However, hMSCs cultured in osteogenic differentiation medium were less responsive in gene expression of alkaline phosphatase and bone morphogenetic protein-2. Conclusion: These data demonstrate that shear stress stimulates hMSCs towards an osteoblastic phenotype in the absence of chemical induction, suggesting that certain mechanical stresses may serve as an alternative to chemical stimulation of stem cell differentiation
Concise review: evidence for CD34 as a common marker for diverse progenitors
CD34 is a transmembrane phosphoglycoprotein, first identified on hematopoietic stem and progenitor cells. Clinically, it is associated with the selection and enrichment of hematopoietic stem cells for bone marrow transplants. Due to these historical and clinical associations, CD34 expression is almost ubiquitously related to hematopoietic cells, and it is a common misconception that CD34‐positive (CD34+) cells in nonhematopoietic samples represent hematopoietic contamination. The prevailing school of thought states that multipotent mesenchymal stromal cells (MSC) do not express CD34. However, strong evidence demonstrates CD34 is expressed not only by MSC but by a multitude of other nonhematopoietic cell types including muscle satellite cells, corneal keratocytes, interstitial cells, epithelial progenitors, and vascular endothelial progenitors. In many cases, the CD34+ cells represent a small proportion of the total cell population and also indicate a distinct subset of cells with enhanced progenitor activity. Herein, we explore common traits between cells that express CD34, including associated markers, morphology and differentiation potential. We endeavor to highlight key similarities between CD34+ cells, with a focus on progenitor activity. A common function of CD34 has yet to be elucidated, but by analyzing and understanding links between CD34+ cells, we hope to be able to offer an insight into the overlapping properties of cells that express CD34. STEM CELLS 2014;32:1380–138
Ferritin concentration and 131I-antiferritin tumor localization in an experimental hepatoma
Selective tumor localization in experimental hepatoma by radiolabeled antiferritin antibody
Use of RUNX2 Expression to Identify Osteogenic Progenitor Cells Derived from Human Embryonic Stem Cells
We generated a RUNX2-yellow fluorescent protein (YFP) reporter system to study osteogenic development from human embryonic stem cells (hESCs). Our studies demonstrate the fidelity of YFP expression with expression of RUNX2 and other osteogenic genes in hESC-derived osteoprogenitor cells, as well as the osteogenic specificity of YFP signal. In vitro studies confirm that the hESC-derived YFP+ cells have similar osteogenic phenotypes to osteoprogenitor cells generated from bone-marrow mesenchymal stem cells. In vivo studies demonstrate the hESC-derived YFP+ cells can repair a calvarial defect in immunodeficient mice. Using the engineered hESCs, we monitored the osteogenic development and explored the roles of osteogenic supplements BMP2 and FGF9 in osteogenic differentiation of these hESCs in vitro. Taken together, this reporter system provides a novel system to monitor the osteogenic differentiation of hESCs and becomes useful to identify soluble agents and cell signaling pathways that mediate early stages of human bone development
Recommended from our members
Functional assessment of hematopoietic niche cells derived from human embryonic stem cells.
To evaluate hematopoietic niche cell populations isolated from human embryonic stem cells (hESCs), we tested the ability of hESC-derived stromal lines to support CD34(+) umbilical cord blood (UCB)- and hESC-derived CD34(+)45(+) cells in long-term culture initiating cell (LTC-IC) assays. Specifically, these hematopoietic populations were cocultured with hESC-derived mesenchymal stromal cells (hESC-MSCs) and hESC-derived endothelial cells (hESC-ECs), and then assessed for their LTC-IC potential in comparison to coculture with bone marrow (BM)-derived MSCs and the mouse stromal line M2-10B4. We found that the hESC-derived stromal lines supported LTC-ICs from UCB similar to M2-10B4 cells and better than BM-MSCs. However, none of the stromal populations supported LTC-IC from hESC-derived CD34(+)45(+) cells. Engraftment data using the output from LTC-IC assays showed long-term repopulation (12 weeks) of NSG mice to correlate with LTC-IC support on a given stromal layer. Therefore, hESC-derived stromal lines can be used to efficiently evaluate putative hematopoietic stem/progenitor cells derived from hESCs or other cell sources
- …
