373 research outputs found
Interactive effects of solar UV radiation and ammonium on the biomass andnutritional compound production in tank cultivated Hydropuntia corne (Rhodophyta)
Figueroa et al. (2016) Acta Aquaculture 16, 331-332Introduction
Hydropuntia cornea is a red alga species cultivated in tanks under nitrogen enrichment with high biomass production and content of high value bioactive compounds (Figueroa et al., 2012; Robledo et al, 2014). In this study, the combined effects (2 × 2 factorial design) of solar radiation (in door (I), green house cutting off the UV radiation and out-door (O) with UV radiation) and nitrogen (ammonium) under high (HN) and low (LN) levels on biomass production (g DW m-2 d-1), biofiltration as Nitrogen uptake efficiency (NUE, %) and Nitrogen uptake rate (NUR, mmol N m-2 h-1), photosynthetic activity as maximal electron transport rate (ETRmax), starch content and antioxidant activity were analyzed in H.cornea grown in tanks for 35 days in the above mentioned conditions.
Material and methods
The red seaweed Hydropuntia cornea was cultivated in cylindrical tanks of 90 L (0.17 m2 superficial area) with open flow-through N and P-enrichment (5 NH4Cl: 1 KHPO4, in a concentration ranges between 50 - 250 µM). Seaweed density assayed in tanks was 9 g FW L-1. Turnover rates were 64 and 6.4 vol d-1 in high and low flow rate, respectively. Photosynthetic activity was measured by using in vivo chlorophyll a fluorescence associated to photosystem II i.e. Electron transport rate (ETR) expressed as μmol electrons m-2 s-1. Starch (%) was determined according to anthrone method (Brooks et al. 1986) and antioxidant activity was evaluated following ABTS method (Ree et al., 1999) and expressed as Trolox equivalent (μM TEAC g-1 DW).
Results
Maximal photosynthetic production (ETRmax) increased throughout the culture time. (Fig. 1.A). After 35 d culture, ETRmax was higher under HN than that under LN both under in door and out door conditions (Fig.1A). However, biomass production expressed as g DW m-2 d-1 decreased throughout the experimental time (Fig 1.B). After 35d culture the highest biomass production was reached under HN-O and the lowest under LN-O although the differences were not so high (Fig.1B). The maximal efficiency of N assimilation (NUE %) was greater under LN (98%) than that under HN treatment (72%). NUE decreased throughout the time although after 35 d a clear increase was observed (Table 1). In contrast, the maximal nitrogen uptake rate (NUR) was higher under HN (45.5 mmol N m-2 h-1) than that under LN (25.8 mmol N m-2 h-1). The highest values of both NUE and NUR were obtained under solar radiation (outdoor treatments). Starch ranged from 25.1% (LN-I, 21 d) to 49.6 % (LN-O, 28 d) whereas the highest antioxidant activity was reached under LN-O after 21 d culture (68.5 μM TEAC g-1 DW). After 35d the highest level was again under LN-O (65.2 μM TEAC g-1 DW) followed by HN-O treatment (57.3 μM TEAC g-1 DW).Discussion and conclusions
Ammonium supply, simulating fishpond effluents, and full solar irradiation (presence of UV radiation) have a positive effect on photosynthetic rate as ETRmax. The decrease in biomass production in spite of the increase of photosynthetic activity and nitrogen uptake rate is explained because the algae through the time could inverse more energy for the accumulation of metabolites (starch and antioxidant compounds) that that for growth. In any case the highest accumulation of starch and antioxidant activity were observed in the treatments associated to the greatest stress conditions i.e LN and outdoor culture due to UVR can negatively affect biological processes related to growth. As expected, under HN supply NUE was lower than that under LN but NUR was the reverse. H. cornea grown in simulated fishpond effluents displays a high biofiltration rate of inorganic N and accumulates commercially N compounds, as the photoprotector-antioxidant substances, mycosporine-like aminoacids (Figueroa et al., 2012) and C-compounds for nutritional uses or bioethanol production. In this study, the antioxidant activity was much higher than that reported in other seaweeds (Matanjun et al., 2008). H. cornea can be cultured and used to remove nutrient-rich fishpond effluents from aquaculture industries and besides, this biomass provides compounds of high added value for the biotechnology industry.
References
Brooks, J.R., Griffin, V.K., Kattan, M.W. 1986.A modified method for total carbohydrate analysisof glucose syrups, maltodextrins and other starch hydrolysis products. Cereal Chem 63:465-466.
Figueroa, F. L., Korbee, N., Abdala, R., Jerez, C. G., López-de la Torre, M., Güenaga, L., Gómez-Pinchetti, J. L. 2012. Biofiltration of fishpond effluents and accumulation of N-compounds (phycobiliproteins and mycosporine-like amino acids) versus C-compounds (polysaccharides) in Hydropuntia cornea (Rhodophyta). Marine Pollution Bulletin, 64(2), 310-318.
Matanjun, P., Mohamed, S., Mustapha, N.M., Ming, C.H. 2008. Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo. J Appl Phycol 20:367–373.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A.,Yang,M., Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237.
Robledo, D., Navarro‐Angulo, L., Valdes Lozano, D., Freile‐Pelegrín, Y. 2014. Nutrient removal efficiency of Hydropuntia cornea in an integrated closed recirculation system with pink shrimp Farfantepenaeus brasiliensis. Aquaculture Research, 45(10), 1648-1658Universidad de Málaga.Campus de Excelencia Internacional Andalucia Tech
Seasonal biochemical and photophysiological responses in the intertidal macroalga Cystoseira tamariscifolia (Ochrophyta)
Respuesta ecofisiológica y capacidad de fotoaclimatación de las praderas de Caulerpa prolifera (Forsskal) J.V. Lamouroux y Cymodocea nodosa (Ucria) Ascherson en el Mar Menor (Murcia, España)
Tras el ensanchamiento en 1972 del principal canal de comunicación con el Mediterráneo, la macroalga Caulerpa prolifera colonizó el Mar Menor. Durante más de tres décadas, su expansión gradual ha reducido las praderas de Cymodocea nodosa, existentes en la laguna, a manchas dispersas en zonas arenosas someras. El objetivo principal es describir la respuesta ecofisiológica y la capacidad de aclimatación de ambas especies con el fin de determinar la influencia de estos mecanismos en la distribución actual de las mismas.
La fluorescencia de la clorofila a asociada al fotosistema II se empleó para determinar los parámetros fotosintéticos. Se midieron diversos mecanismos fotoprotectores y antioxidantes (concentración de fenoles, actividad antioxidante mediante el método de DPPH), concentración de clorofilas y carotenoides, así como el contenido interno de C y N, para caracterizar la respuesta fisiológica de ambas especies. Asimismo, se llevaron a cabo experimentos de exposición a altas irradiancias y recuperación en oscuridad para valorar su capacidad de aclimatación.
Se encontraron valores bajos de los parámetros fotosintéticos (tasa de transporte electrónico máximo, eficiencia fotosintética) en C. prolifera. Sin embargo, se observó una mayor capacidad fotosintética y la ausencia de fotoinhibición en C. nodosa, además de una alta concentración de luteína y un alto grado de de-epoxidación correlacionado con un mayor amortiguamiento no fotoquímico.
Los resultados muestran que C. prolifera se comporta como una especie de sombra con una baja capacidad fotoprotectora, siendo la luz uno de los principales factores que determinan su distribución en la laguna. Sin embargo, C. nodosa muestra estar altamente fotoaclimatada a altas irradiancias y su distribución no está directamente relacionada con el ambiente lumínico. Así la regresión de las praderas de Cymodocea, que se observó antes del deterioro de la calidad del agua de la laguna, podría estar relacionada con otros factores ambientales (exceso de materia orgánica, carbonatos en sedimentos, hipoxia…) o con la competencia con C. prolifera. Es necesario realizar experimentos manipulativos para profundizar en el conocimiento de la actual distribución de ambas especies.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Host-directed therapy for intracellular bacterial Infections
Antibiotic
resistance is an increasing problem in the battle against (bacterial)
infectious diseases. The emergence of drug-resistant Mycobacterium tuberculosis
(Mtb) threatens to render tuberculosis (TB) untreatable. Efforts to develop
novel antibiotics have so far been unsuccessful, calling for additional
approaches for treatment of bacterial infections. Intracellular pathogens like
Mtb and Salmonella can survive in the host by manipulating host cell signaling.
This provides opportunities for novel therapeutic strategies by targeting the
host, rather than the bacterium (host-directed therapy).
In this thesis we report the development and application of novel (in vitro and
in vivo) methods for identifying host genes and proteins involved in host
control of intracellular bacteria, as well as chemical compounds that target
host molecules as a basis for drug development for host-directed therapies. As
a result, we report the identification of RTK inhibitors, the novel kinase
inhibitor 97i, the human kinase family PCTAIRE and the host protein DRAM1 as
promising leads for further drug development for host-directed therapeutic
strategies for intracellular bacterial infections.LUMC / Geneeskund
Fotorregulación y efecto del nitrógeno inorgánico en la acumulación de aminoácidos tipo micosporina en algas rojas
En este trabajo se analizará el papel de la radiación lumínica y la disponibilidad de
nutrientes en la fotosíntesis y en la acumulación de pigmentos fotosintéticos y moléculas
fotoprotectoras.
La radiación solar es la fuente primaria de energía para la vida sobre la Tierra; ésta puede
afectar al crecimiento y al desarrollo de las plantas tanto como fuente de energía mediante la
fotosíntesis, como fuente de calor y como fuente de información ambiental. La irradiancia, la
composición espectral, la dirección con que incide y su fotoperiodo son aspectos del ambiente
lumínico que cambian en condiciones naturales y proporcionan información acerca de las
condiciones ambientales. Las plantas poseen fotorreceptores que les permiten emplear dicha
información en la modulación de distintos aspectos del crecimiento y desarrollo.
Las algas necesitan carbono inorgánico, agua, luz y nutrientes para la fotosíntesis y el
crecimiento. El nitrógeno es uno de los elementos químicos más abundantes en la materia viva,
todos los aminoácidos contienen nitrógeno y está presente en otras importantes biomoléculas
(como son la clorofila, la ficobiliproteína, etc). También es el elemento que con más frecuencia
limita el crecimiento algal. La asimilación de nitrógeno es un proceso dependiente de la
fotosíntesis y del metabolismo del carbono para el aporte de poder reductor, ATP y esqueletos
carbonados. Por ello, no sólo el nitrógeno inorgánico, sino también la luz y los azúcares, actúan
como señales que modulan positivamente la síntesis y la actividad de diversas enzimas
relacionadas con la asimilación del nitrógeno.
En el primer apartado de la introducción se abordarán los efectos biológicos que induce la
RUV en los organismos acuáticos y los posibles mecanismos de fotoprotección presentes en los
mismos, como la presencia de moléculas pantalla de esta banda de RUV, entre las que se
encuentran los aminoácidos tipo micosporina (MAAs, de su abreviatura en inglés mycosporinelike
amino acids). Estas moléculas, además de poseer una estructura química que les permite
absorber estas longitudes de onda, poseen nitrógeno entre los elementos químicos que la
componen. Nos planteamos la posibilidad de que su presencia no sólo se relacione con la
cantidad de radiación recibida, sino que también pueda estar relacionada con la disponibilidad
relativa de nutrientes (concretamente de nitrógeno) en el medio de cultivo. En el segundo
apartado de la introducción se tratará este aspecto
Advancing Porphyra linearis (Rhodophyta, Bangiales) culture: low cost artificial seawater, nitrate supply, photosynthetic activity and energy dissipation
Fertilizer use in agriculture and aquaculture significantly contributes to nitrate-rich effluent discharge into aquatic environments. Porphyra's high surface area/volume enables efficient nutrient assimilation. This study aimed to identify a cost-effective, efficient artificial seawater medium for Porphyra linearis cultivation and determine the optimal nitrate concentration to enhance photosynthetic activity. Porphyra linearis was grown in three different salt media, with photosynthetic and biochemical parameters assessed, showing no differences. The nitrate experiment (7 days) using low-cost salt and varied concentration (0 to 6.5 mM) revealed optimal nitrate uptake at 3 and 5 mM, while 6.5 mM indicated saturation/toxicity. The phycobiliproteins contents did not increase compared to the 0 mM, but exhibited greater functionality, as evidenced by the enhanced photosynthetic parameters. Chlorophyll a peaked in 3 mM, whereas lutein and β-carotene peaked in 0 and 3 mM. The thalli turned greenish and appeared to have degraded branches under 0 mM. Growth rate was the same under all nitrate concentration and higher than under 0 mM. The presence of nitrate increased ETRin situ and ETRmax, whereas the absence decreased the range between optimal irradiance for photoinhibition (EoptETR) and saturated irradiance for photosynthesis (EkETR) and between saturated irradiance for non-photochemical quenching (EkNPQ) and EkETR, suggesting that under more nitrate available the algae dissipate less energy. P. linearis showed a wide range of nitrate use without variation in pigment composition in contrast to photosynthetic capacity. The 1.5 and 3 mM in cultivation significantly enhance the photosynthetic response of P. linearis, supporting their potential application in IMTA and bioremediation.Funding for open access charge: Universidad de Málaga / CBU
- …
