1,306 research outputs found
Assessing the impact of climate change on vector-borne viruses in the EU through the elicitation of expert opinion
Expert opinion was elicited to undertake a qualitative risk assessment to estimate the current and future risks to the European Union (EU) from five vector-borne viruses listed by the World Organization for Animal Health. It was predicted that climate change will increase the risk of incursions of African horse sickness virus (AHSV), Crimean-Congo haemorrhagic fever virus (CCHFV) and Rift Valley fever virus (RVFV) into the EU from other parts of the world, with African swine fever virus (ASFV) and West Nile virus (WNV) being less affected. Currently the predicted risks of incursion were lowest for RVFV and highest for ASFV. Risks of incursion were considered for six routes of entry (namely vectors, livestock, meat products, wildlife, pets and people). Climate change was predicted to increase the risk of incursion from entry of vectors for all five viruses to some degree, the strongest effects being predicted for AHSV, CCHFV and WNV. This work will facilitate identification of appropriate risk management options in relation to adaptations to climate change
The Effect of Electronic Cigarette User Modifications and E-liquid Adulteration on the Particle Size Profile of an Aerosolized Product
Electronic cigarettes (e-cigarettes) are an alternate nicotine delivery system that generate a condensation aerosol to be inhaled by the user. The size of the droplets formed in the aerosol can vary and contributes to drug deposition and ultimate bioavailability in the lung. The growing popularity of e-cigarette products has caused an increase in internet sources promoting the use of drugs other than nicotine (DOTNs) in e-cigarettes. The purpose of this study was to determine the effect of various e-cigarette and e-liquid modifications, such as coil resistance, battery voltage, and glycol and drug formulation, on the aerosol particle size. E-liquids containing 12 mg/mL nicotine prepared in glycol compositions of 100% propylene glycol (PG), 100% vegetable glycerin (VG), or 50:50 PG:VG were aerosolized at three voltages and three coil resistances. Methamphetamine and methadone e-liquids were prepared at 60 mg/mL in 50:50 PG:VG and all e-liquids were aerosolized onto a 10 stage Micro-Orifice Uniform Deposit Impactor. Glycol deposition correlated with drug deposition, and the majority of particles centered between 0.172–0.5 μm in diameter, representing pulmonary deposition. The 100% PG e-liquid produced the largest aerosol particles and the 100% VG and 50:50 PG:VG e-liquids produced ultra-fine particles \u3c0.3 μm. The presence of ultrafine particles indicates that drugs can be aerosolized and reach the pulmonary alveolar regions, highlighting a potential for abuse and risk of overdose with DOTNs aerosolized in an e-cigarette system
Modelling the species jump: towards assessing the risk of human infection from novel avian influenzas
The scientific understanding of the driving factors behind zoonotic and pandemic influenzas is hampered by complex interactions between viruses, animal hosts and humans. This complexity makes identifying influenza viruses of high zoonotic or pandemic risk, before they emerge from animal populations, extremely difficult and uncertain. As a first step towards assessing zoonotic risk of Influenza, we demonstrate a risk assessment framework to assess the relative likelihood of influenza A viruses, circulating in animal populations, making the species jump into humans. The intention is that such a risk assessment framework could assist decisionmakers to compare multiple influenza viruses for zoonotic potential and hence to develop appropriate strain-specific control measures. It also provides a first step towards showing proof of principle for an eventual pandemic risk model. We show that the spatial and temporal epidemiology is as important in assessing the risk of an influenza A species jump as understanding the innate molecular capability of the virus.We also demonstrate data deficiencies that need to be addressed in order to consistently combine both epidemiological and molecular virology data into a risk assessment framework
Non-catalytic Roles of Tet2 Are Essential to Regulate Hematopoietic Stem and Progenitor Cell Homeostasis
The Ten-eleven translocation (TET) enzymes regulate gene expression by promoting DNA demethylation and partnering with chromatin modifiers. TET2, a member of this family, is frequently mutated in hematological disorders. The contributions of TET2 in hematopoiesis have been attributed to its DNA demethylase activity, and the significance of its nonenzymatic functions has remained undefined. To dissect the catalytic and non-catalytic requirements of Tet2, we engineered catalytically inactive Tet2 mutant mice and conducted comparative analyses of Tet2 mutant and Tet2 knockout animals. Tet2 knockout mice exhibited expansion of hematopoietic stem and progenitor cells (HSPCs) and developed myeloid and lymphoid disorders, while Tet2 mutant mice predominantly developed myeloid malignancies reminiscent of human myelodysplastic syndromes. HSPCs from Tet2 knockout mice exhibited distinct gene expression profiles, including downregulation of Gata2. Overexpression of Gata2 in Tet2 knockout bone marrow cells ameliorated disease phenotypes. Our results reveal the non-catalytic roles of TET2 in HSPC homeostasis
Recommended from our members
Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN.
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (-1.0_{-1.1}^{+0.9}) eV^{2}. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation
Commissioning of the vacuum system of the KATRIN Main Spectrometer
The KATRIN experiment will probe the neutrino mass by measuring the
beta-electron energy spectrum near the endpoint of tritium beta-decay. An
integral energy analysis will be performed by an electro-static spectrometer
(Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a
volume of 1240 m^3, and a complex inner electrode system with about 120000
individual parts. The strong magnetic field that guides the beta-electrons is
provided by super-conducting solenoids at both ends of the spectrometer. Its
influence on turbo-molecular pumps and vacuum gauges had to be considered. A
system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter
strips has been deployed and was tested during the commissioning of the
spectrometer. In this paper the configuration, the commissioning with bake-out
at 300{\deg}C, and the performance of this system are presented in detail. The
vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is
demonstrated that the performance of the system is already close to these
stringent functional requirements for the KATRIN experiment, which will start
at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure
Early apoptosis of porcine alveolar macrophages limits avian influenza virus replication and proinflammatory dysregulation
Pigs are evidently more resistant to avian than swine influenza A viruses, mediated in part through frontline epithelial cells and alveolar macrophages (AM). Although porcine AM (PAM) are crucial in influenza virus control, their mode of control is unclear. To gain insight into the possible role of PAM in the mediation of avian influenza virus resistance, we compared the host effects and replication of two avian (H2N3 and H6N1) and three mammalian (swine H1N1, human H1N1 and pandemic H1N1) influenza viruses in PAM. We found that PAM were readily susceptible to initial infection with all five avian and mammalian influenza viruses but only avian viruses caused early and extensive apoptosis (by 6 h of infection) resulting in reduced virus progeny and moderated pro- inflammation. Full length viral PB1-F2 present only in avian influenza viruses is a virulence factor that targets AM for mitochondrial associated apoptotic cell death. With the use of reverse genetics on an avian H5N1 virus, we found that full length PB1-F2 contributed to increased apoptosis and pro-inflammation but not to reduced virus replication. Taken together, we propose that early apoptosis of PAM limits the spread of avian influenza viruses and that PB1-F2 could play a contributory role in the process
Hegel and the Frankfurt School: Rethinking Historical Progress
The criticism of Hegel\u27s philosophy of history is a recurring theme in the work of the Frankfurt School critical theorists. There is good reason for this, as Hegel\u27s philosophy of history seems to have become hopelessly outdated. After the events of the past two centuries, we can no longer think of the historical process as the manifestation of Reason in the world. Yet there is nonetheless a certain power in the idea of history as spirit working through its inadequacies and self-alienation, a power that authors such as Theodor Adorno and Walter Benjamin do not fully recognize. This dissertation attempts to show how the Hegelian idea of history can be rethought in a way that preserves its critical power, while avoiding the pitfalls of Enlightenment-era historiography. Through the work of Adorno, Benjamin, and Siegfried Kracauer, I try to show that we not only can think of history as a kind of progressive overcoming of an objectivity alien to humanity, but also that such a conception can be beneficial to our projects oriented toward a better present and future
Tritium Retention Techniques in the KATRIN Transport Section and Commissioning of its DPS2-F Cryostat
The impact of cigarette/e-cigarette vapour on simulated pulmonary surfactant monolayers under physiologically relevant conditions
Deviation in pulmonary surfactant structure–function activity can impair airway patency and lead to respiratory disorders. This novel study aims to evaluate the influence cigarette/e-cigarette vapour has on model surfactant films located within a simulated pulmonary environment using a lung biosimulator. Chromatographic analysis confirmed that nicotine levels were consistent with the sampling regimen employed. On exposure to smoke vapour, Langmuir isotherms exhibited condensed character and a significant reduction in maximum surface pressure was noted in all cases. Langmuir isocycles, reflective of the human breathing cycle, demonstrated condensed character on smoke vapour delivery. A reduction in themaximumsurface pressure was clear only in the case of cigarette vapour application. The components of cigarette vapour can cause oxidative damage to pulmonary surfactant and impair recycling. Neutral nicotine molecules can weaken the structure of the monolayer and cause destabilisation. A protective effect was evident in the case of repeated surfactant compression – relaxation cycles (i.e. the ability to reduce the surface tension term was impaired less), demonstrating a likely innate biological defensive mechanism of the lung. E-cigarette vapour appeared to have a reduced impact on surfactant performance, which may hold value in harm reduction over the longer term
- …
