47 research outputs found

    First measurement of the cross-correlation of CMB lensing and galaxy lensing

    Get PDF
    We measure the cross-correlation of cosmic microwave background (CMB) lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the Canada-France-Hawaii Telescope Stripe 82 Survey. The CMB-galaxy lensing cross power spectrum is measured for the first time with a significance of 4.2σ, which corresponds to a 12% constraint on the amplitude of density fluctuations at redshifts ∼0.9. With upcoming improved lensing data, this novel type of measurement will become a powerful cosmological probe, providing a precise measurement of the mass distribution at intermediate redshifts and serving as a calibrator for systematic biases in weak lensing measurements

    Weak-lensing mass calibration of the Atacama Cosmology Telescope equatorial Sunyaev-Zeldovich cluster sample with the Canada-France-Hawaii telescope stripe 82 survey

    Get PDF
    Mass calibration uncertainty is the largest systematic effect for using clusters of galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). For a sample of 9 ACT clusters with a tSZ signal-to-noise greater than five the average weak lensing mass is (4.8±0.8) ×1014 Mo, consistent with the tSZ mass estimate of (4.70±1.0) ×1014 Mo which assumes a universal pressure profile for the cluster gas. Our results are consistent with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously excluded

    Atrioventricular and interventricular delay optimization in cardiac resynchronization therapy: physiological principles and overview of available methods

    Get PDF
    In this review, the physiological rationale for atrioventricular and interventricular delay optimization of cardiac resynchronization therapy is discussed including the influence of exercise and long-term cardiac resynchronization therapy. The broad spectrum of both invasive and non-invasive optimization methods is reviewed with critical appraisal of the literature. Although the spectrum of both invasive and non-invasive optimization methods is broad, no single method can be recommend for standard practice as large-scale studies using hard endpoints are lacking. Current efforts mainly investigate optimization during resting conditions; however, there is a need to develop automated algorithms to implement dynamic optimization in order to adapt to physiological alterations during exercise and after anatomical remodeling

    Cosmological parameters from pre-Planck CMB measurements: A 2017 update

    No full text
    We present cosmological constraints from the combination of the full mission nine-year WMAP release and small-scale temperature data from the pre-Planck Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT) generation of instruments. This is an update of the analysis presented in Calabrese et al. [Phys. Rev. D 87, 103012 (2013)], and highlights the impact on ΛCDM cosmology of a 0.06 eV massive neutrino—which was assumed in the Planck analysis but not in the ACT/SPT analyses—and a Planck-cleaned measurement of the optical depth to reionization. We show that cosmological constraints are now strong enough that small differences in assumptions about reionization and neutrino mass give systematic differences which are clearly detectable in the data.We recommend that these updated results be used when comparing cosmological constraints from WMAP, ACT and SPT with other surveys or with current and future full-mission Planck cosmology. Cosmological parameter chains are publicly available on the NASA’s LAMBDA data archive

    The Atacama Cosmology Telescope: measuring radio galaxy bias through cross-correlation with lensing

    No full text
    © 2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. We correlate the positions of radio galaxies in the FIRST survey with the cosmic microwave background lensing convergence estimated from the Atacama Cosmology Telescope over 470 deg < sup > 2 < /sup > to determine the bias of these galaxies. We remove optically cross-matched sources below redshift z = 0.2 to preferentially select active galactic nuclei (AGN). We measure the angular cross-power spectrum C < inf > l < /inf > < sup > kg < /sup > at 4.4σ significance in the multipole range 100 < l < 3000, corresponding to physical scales within ≈2-60 Mpc at an effective redshift z < inf > eff < /inf > = 1.5. Modelling the AGN population with a redshift-dependent bias, the cross-spectrum is well fitted by the Planck best-fitting Λ cold dark matter cosmological model. Fixing the cosmology and assumed redshift distribution of sources, we fit for the overall bias model normalization, finding b(z < inf > eff < /inf > ) = 3.5 ± 0.8 for the full galaxy sample and b(z < inf > eff < /inf > ) = 4.0 ± 1.1(3.0 ± 1.1) for sources brighter (fainter) than 2.5 mJy. This measurement characterizes the typical halo mass of radio-loud AGN: we find log(M < inf > halo < /inf > /M < inf > ⊙ < /inf > ) = 13.6 < inf > -0.4 < /inf > < sup > +0.3 < /sup >

    The Atacama Cosmology Telescope: measuring radio galaxy bias through cross-correlation with lensing

    No full text
    © 2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. We correlate the positions of radio galaxies in the FIRST survey with the cosmic microwave background lensing convergence estimated from the Atacama Cosmology Telescope over 470 deg 2 to determine the bias of these galaxies. We remove optically cross-matched sources below redshift z = 0.2 to preferentially select active galactic nuclei (AGN). We measure the angular cross-power spectrum C l kg at 4.4σ significance in the multipole range 100 eff = 1.5. Modelling the AGN population with a redshift-dependent bias, the cross-spectrum is well fitted by the Planck best-fitting Λ cold dark matter cosmological model. Fixing the cosmology and assumed redshift distribution of sources, we fit for the overall bias model normalization, finding b(z eff ) = 3.5 ± 0.8 for the full galaxy sample and b(z eff ) = 4.0 ± 1.1(3.0 ± 1.1) for sources brighter (fainter) than 2.5 mJy. This measurement characterizes the typical halo mass of radio-loud AGN: we find log(M halo /M ⊙ ) = 13.6 -0.4 +0.3
    corecore