1,969 research outputs found
X-ray bolometric corrections for Compton-thick active galactic nuclei
We present X-ray bolometric correction factors, (), for Compton-thick (CT) active galactic nuclei (AGN) with the aim
of testing AGN torus models, probing orientation effects, and estimating the
bolometric output of the most obscured AGN. We adopt bolometric luminosities,
, from literature infrared (IR) torus modeling and compile published
intrinsic 2--10 keV X-ray luminosities, , from X-ray torus modeling of
NuSTAR data. Our sample consists of 10 local CT AGN where both of these
estimates are available. We test for systematic differences in
values produced when using two widely used IR torus models and two widely used
X-ray torus models, finding consistency within the uncertainties. We find that
the mean of our sample in the range
erg/s is log
with an intrinsic scatter of dex, and that our derived
values are consistent with previously established relationships between
and and and Eddington ratio. We
investigate if is dependent on by comparing our results on
CT AGN to published results on less-obscured AGN, finding no significant
dependence. Since many of our sample are megamaser AGN, known to be viewed
edge-on, and furthermore under the assumptions of AGN unification whereby
unobscured AGN are viewed face-on, our result implies that the X-ray emitting
corona is not strongly anisotropic. Finally, we present values
for CT AGN identified in X-ray surveys as a function of their observed ,
where an estimate of their intrinsic is not available, and redshift,
useful for estimating the bolometric output of the most obscured AGN across
cosmic time.Comment: Accepted for publication in Ap
Measuring the Obscuring Column of a Disk Megamaser AGN in a Nearby Merger
Active galactic nuclei (AGNs) hosting disk water megamasers are well known to be obscured by large amounts of gas, likely due to the presence along the line of sight of an almost edge-on disky structure orbiting the supermassive black hole. Correcting for the high obscuration is crucial to infer parameters intrinsic to the source, like its luminosity. We present a broadband X-ray spectral analysis of a water megamaser AGN in an early merger (NGC 5765B), combining Chandra and NuSTAR data. NGC 5765B is highly Compton-thick and reflection-dominated, following the general trend among disk megamasers. Combining the exquisite black hole mass from masers with our X-ray spectroscopy, the Eddington ratio of the megamaser is estimated to be in the 2%–14% range, and its robustness is confirmed through SED fitting
Crossover Scaling in Dendritic Evolution at Low Undercooling
We examine scaling in two-dimensional simulations of dendritic growth at low
undercooling, as well as in three-dimensional pivalic acid dendrites grown on
NASA's USMP-4 Isothermal Dendritic Growth Experiment. We report new results on
self-similar evolution in both the experiments and simulations. We find that
the time dependent scaling of our low undercooling simulations displays a
cross-over scaling from a regime different than that characterizing Laplacian
growth to steady-state growth
[O III] and X-ray Properties of a Complete Sample of Hard X-ray Selected AGNs in the Local Universe
We study the correlation between the [O III] and X-ray
luminosities of local Active Galactic Nuclei (AGNs), using a complete, hard
X-ray ( keV) selected sample in the Swift/BAT 9-month catalog. From our
optical spectroscopic observations at the South African Astronomical
Observatory and the literature, a catalog of [O III] line flux
for all 103 AGNs at Galactic latitudes of is complied.
Significant correlations with intrinsic X-ray luminosity () are
found both for observed () and extinction-corrected () luminosities, separately for X-ray unabsorbed and absorbed
AGNs. We obtain the regression form of and from the whole sample. The absorbed AGNs with low
(0.5\%) scattering fractions in soft X-rays show on average smaller and ratios than the
other absorbed AGNs, while those in edge-on host galaxies do not. These results
suggest that a significant fraction of this population are buried in tori with
small opening angles. By using these vs.
correlations, the X-ray luminosity function of local AGNs (including Compton
thick AGNs) in a standard population synthesis model gives much better
agreement with the [O III] luminosity function derived from the
Sloan Digital Sky Survey than previously reported. This confirms that hard
X-ray observations are a very powerful tool to find AGNs with high
completeness.Comment: 14 pages including 11 figures and 3 tables, accepted for publication
in ApJ. In this manuscript, the observed 14-195 keV luminosities in Table 1
have been corrected to be exactly the same as in the original Swift/BAT
9-month catalog. Accordingly, Figures 2(a) and 3(a) and a part of Tables 2
and 3 have been updated. The changes from the previous version are small and
do not affect the tex
A Hard Look at NGC 5347: Revealing a Nearby Compton-thick AGN
Current measurements show that the observed fraction of Compton-thick (CT) active galactic nuclei (AGN) is smaller than the expected values needed to explain the cosmic X-ray background. Prior fits to the X-ray spectrum of the nearby Seyfert-2 galaxy NGC 5347 (z = 0.00792, D = 35.5 Mpc ) have alternately suggested a CT and Compton-thin source. Combining archival data from Suzaku, Chandra, and—most importantly—new data from NuSTAR, ... See full text for complete abstrac
On the relation of optical obscuration and X-ray absorption in Seyfert galaxies
The optical classification of a Seyfert galaxy and whether it is considered
X-ray absorbed are often used interchangeably. But there are many borderline
cases and also numerous examples where the optical and X-ray classifications
appear to be in conflict. In this article we re-visit the relation between
optical obscuration and X-ray absorption in AGNs. We make use of our "dust
color" method (Burtscher et al. 2015) to derive the optical obscuration A_V and
consistently estimated X-ray absorbing columns using 0.3--150 keV spectral
energy distributions. We also take into account the variable nature of the
neutral gas column N_H and derive the Seyfert sub-classes of all our objects in
a consistent way.
We show in a sample of 25 local, hard-X-ray detected Seyfert galaxies (log
L_X / (erg/s) ~ 41.5 - 43.5) that there can actually be a good agreement
between optical and X-ray classification. If Seyfert types 1.8 and 1.9 are
considered unobscured, the threshold between X-ray unabsorbed and absorbed
should be chosen at a column N_H = 10^22.3 / cm^2 to be consistent with the
optical classification.
We find that N_H is related to A_V and that the N_H/A_V ratio is
approximately Galactic or higher in all sources, as indicated previously. But
in several objects we also see that deviations from the Galactic ratio are only
due to a variable X-ray column, showing that (1) deviations from the Galactic
N_H/A_V can simply be explained by dust-free neutral gas within the broad line
region in some sources, that (2) the dust properties in AGNs can be similar to
Galactic dust and that (3) the dust color method is a robust way to estimate
the optical extinction towards the sublimation radius in all but the most
obscured AGNs.Comment: 7 pages, 3 figures, accepted for publication by A&A; updated PDF to
include abstrac
Broadband Observations of the Compton-thick Nucleus of NGC 3393
We present new NuSTAR and Chandra observations of NGC 3393, a galaxy reported
to host the smallest separation dual AGN resolved in the X-rays. While past
results suggested a 150 pc separation dual AGN, three times deeper Chandra
imaging, combined with adaptive optics and radio imaging suggest a single,
heavily obscured, radio-bright AGN. Using VLA and VLBA data, we find an AGN
with a two-sided jet rather than a dual AGN and that the hard X-ray, UV,
optical, NIR, and radio emission are all from a single point source with a
radius <0.2". We find that the previously reported dual AGN is most likely a
spurious detection resulting from the low number of X-ray counts (<160) at 6-7
keV and Gaussian smoothing of the data on scales much smaller than the PSF
(0.25" vs. 0.80" FWHM). We show that statistical noise in a single Chandra PSF
generates spurious dual peaks of the same separation (0.550.07" vs. 0.6")
and flux ratio (399% vs. 32% of counts) as the purported dual AGN. With
NuSTAR, we measure a Compton-thick source (NH=
cm) with a large torus half-opening angle, {\theta}=79 which we
postulate results from feedback from strong radio jets. This AGN shows a 2-10
keV intrinsic to observed flux ratio of 150. Using simulations, we find that
even the deepest Chandra observations would severely underestimate the
intrinsic luminosity of NGC 3393 above z>0.2, but would detect an unobscured
AGN of this luminosity out to high redshift (z=5).Comment: Accepted for publication in ApJ. 15 Figures and 4 table
Interactional positioning and narrative self-construction in the first session of psychodynamic-interpersonal psychotherapy
The purpose of this study is to identify possible session one indicators of end of treatment psychotherapy outcome using the framework of three types of interactional positioning; client’s self-positioning, client’s positioning between narrated self and different partners, and the positioning between client and therapist. Three successful cases of 8-session psychodynamic-interpersonal (PI) therapy were selected on the basis of client Beck Depression Inventory scores. One unsuccessful case was also selected against which identified patterns could be tested. The successful clients were more descriptive about their problems and demonstrated active rapport-building, while the therapist used positionings expressed by the client in order to explore the positionings developed between them during therapy. The unsuccessful case was characterized by lack of positive self-comment, minimization of agentic self-capacity, and empathy-disrupting narrative confusions. We conclude that the theory of interactional positioning has been useful in identifying patterns worth exploring as early indicators of success in PI therapy
A population of luminous accreting black holes with hidden mergers
Major galaxy mergers are thought to play an important part in fuelling the
growth of supermassive black holes. However, observational support for this
hypothesis is mixed, with some studies showing a correlation between merging
galaxies and luminous quasars and others showing no such association. Recent
observations have shown that a black hole is likely to become heavily obscured
behind merger-driven gas and dust, even in the early stages of the merger, when
the galaxies are well separated (5 to 40 kiloparsecs). Merger simulations
further suggest that such obscuration and black-hole accretion peaks in the
final merger stage, when the two galactic nuclei are closely separated (less
than 3 kiloparsecs). Resolving this final stage requires a combination of
high-spatial-resolution infrared imaging and high-sensitivity hard-X-ray
observations to detect highly obscured sources. However, large numbers of
obscured luminous accreting supermassive black holes have been recently
detected nearby (distances below 250 megaparsecs) in X-ray observations. Here
we report high-resolution infrared observations of hard-X-ray-selected black
holes and the discovery of obscured nuclear mergers, the parent populations of
supermassive-black-hole mergers. We find that obscured luminous black holes
(bolometric luminosity higher than 2x10^44 ergs per second) show a significant
(P<0.001) excess of late-stage nuclear mergers (17.6 per cent) compared to a
sample of inactive galaxies with matching stellar masses and star formation
rates (1.1 per cent), in agreement with theoretical predictions. Using
hydrodynamic simulations, we confirm that the excess of nuclear mergers is
indeed strongest for gas-rich major-merger hosts of obscured luminous black
holes in this final stage.Comment: To appear in the 8 November 2018 issue of Nature. This is the
authors' version of the wor
- …
