275 research outputs found

    Dichotomy Results for Fixed-Point Existence Problems for Boolean Dynamical Systems

    Full text link
    A complete classification of the computational complexity of the fixed-point existence problem for boolean dynamical systems, i.e., finite discrete dynamical systems over the domain {0, 1}, is presented. For function classes F and graph classes G, an (F, G)-system is a boolean dynamical system such that all local transition functions lie in F and the underlying graph lies in G. Let F be a class of boolean functions which is closed under composition and let G be a class of graphs which is closed under taking minors. The following dichotomy theorems are shown: (1) If F contains the self-dual functions and G contains the planar graphs then the fixed-point existence problem for (F, G)-systems with local transition function given by truth-tables is NP-complete; otherwise, it is decidable in polynomial time. (2) If F contains the self-dual functions and G contains the graphs having vertex covers of size one then the fixed-point existence problem for (F, G)-systems with local transition function given by formulas or circuits is NP-complete; otherwise, it is decidable in polynomial time.Comment: 17 pages; this version corrects an error/typo in the 2008/01/24 versio

    Dichotomy Results for Fixed Point Counting in Boolean Dynamical Systems

    Full text link
    We present dichotomy theorems regarding the computational complexity of counting fixed points in boolean (discrete) dynamical systems, i.e., finite discrete dynamical systems over the domain {0,1}. For a class F of boolean functions and a class G of graphs, an (F,G)-system is a boolean dynamical system with local transitions functions lying in F and graphs in G. We show that, if local transition functions are given by lookup tables, then the following complexity classification holds: Let F be a class of boolean functions closed under superposition and let G be a graph class closed under taking minors. If F contains all min-functions, all max-functions, or all self-dual and monotone functions, and G contains all planar graphs, then it is #P-complete to compute the number of fixed points in an (F,G)-system; otherwise it is computable in polynomial time. We also prove a dichotomy theorem for the case that local transition functions are given by formulas (over logical bases). This theorem has a significantly more complicated structure than the theorem for lookup tables. A corresponding theorem for boolean circuits coincides with the theorem for formulas.Comment: 16 pages, extended abstract presented at 10th Italian Conference on Theoretical Computer Science (ICTCS'2007

    Cluster Computing and the Power of Edge Recognition

    Full text link
    We study the robustness--the invariance under definition changes--of the cluster class CL#P [HHKW05]. This class contains each #P function that is computed by a balanced Turing machine whose accepting paths always form a cluster with respect to some length-respecting total order with efficient adjacency checks. The definition of CL#P is heavily influenced by the defining paper's focus on (global) orders. In contrast, we define a cluster class, CLU#P, to capture what seems to us a more natural model of cluster computing. We prove that the naturalness is costless: CL#P = CLU#P. Then we exploit the more natural, flexible features of CLU#P to prove new robustness results for CL#P and to expand what is known about the closure properties of CL#P. The complexity of recognizing edges--of an ordered collection of computation paths or of a cluster of accepting computation paths--is central to this study. Most particularly, our proofs exploit the power of unique discovery of edges--the ability of nondeterministic functions to, in certain settings, discover on exactly one (in some cases, on at most one) computation path a critical piece of information regarding edges of orderings or clusters

    The Complexity of Computing the Size of an Interval

    Get PDF
    Given a p-order A over a universe of strings (i.e., a transitive, reflexive, antisymmetric relation such that if (x, y) is an element of A then |x| is polynomially bounded by |y|), an interval size function of A returns, for each string x in the universe, the number of strings in the interval between strings b(x) and t(x) (with respect to A), where b(x) and t(x) are functions that are polynomial-time computable in the length of x. By choosing sets of interval size functions based on feasibility requirements for their underlying p-orders, we obtain new characterizations of complexity classes. We prove that the set of all interval size functions whose underlying p-orders are polynomial-time decidable is exactly #P. We show that the interval size functions for orders with polynomial-time adjacency checks are closely related to the class FPSPACE(poly). Indeed, FPSPACE(poly) is exactly the class of all nonnegative functions that are an interval size function minus a polynomial-time computable function. We study two important functions in relation to interval size functions. The function #DIV maps each natural number n to the number of nontrivial divisors of n. We show that #DIV is an interval size function of a polynomial-time decidable partial p-order with polynomial-time adjacency checks. The function #MONSAT maps each monotone boolean formula F to the number of satisfying assignments of F. We show that #MONSAT is an interval size function of a polynomial-time decidable total p-order with polynomial-time adjacency checks. Finally, we explore the related notion of cluster computation.Comment: This revision fixes a problem in the proof of Theorem 9.

    Anomalous Hall-like transverse magnetoresistance in Au thin films on Y3_3Fe5_5O12_{12}

    Full text link
    Anomalous Hall-like signals in platinum in contact with magnetic insulators are common observations that could be explained by either proximity magnetization or spin Hall magnetoresistance. In this work, longitudinal and transverse magnetoresistances are measured in a pure gold thin film on the ferrimagnetic insulator Y3_3Fe5_5O12_{12} (Yttrium Iron Garnet, YIG). We show that both the longitudinal and transverse magnetoresistances have quantitatively consistent scaling in YIG/Au and in a YIG/Pt reference system when applying the Spin Hall magnetoresistance framework. No contribution of an anomalous Hall effect due to the magnetic proximity effect is evident.Comment: 7 pages, 2 figures and Supplementary Informatio

    Evolution of the Spin Hall Magnetoresistance in Cr2_2O3_3/Pt bilayers close to the N\'eel temperature

    Full text link
    We study the evolution of magnetoresistance with temperature in thin film bilayers consisting of platinum and the antiferromagnet Cr2_2O3_3 with its easy axis out of the plane. We vary the temperature from 20 - 60{\deg}C, close to the N\'eel temperature of Cr2_2O3_3 of approximately 37{\deg}C. The magnetoresistive response is recorded during rotations of the external magnetic field in three mutually orthogonal planes. A large magnetoresistance having a symmetry consistent with a positive spin Hall magnetoresistance is observed in the paramagnetic phase of the Cr2_2O3_3, which however vanishes when cooling to below the N\'eel temperature. Comparing to analogous experiments in a Gd3_3Ga5_5O12_{12}/Pt heterostructure, we conclude that a paramagnetic field induced magnetization in the insulator is not sufficient to explain the observed magnetoresistance. We speculate that the type of magnetic moments at the interface qualitatively impacts the spin angular momentum transfer, with the 3d3d moments of Cr sinking angular momentum much more efficiently as compared to the more localized 4f4f moments of Gd.Comment: 5 pages, 3 figure

    Directed network modules

    Get PDF
    A search technique locating network modules, i.e., internally densely connected groups of nodes in directed networks is introduced by extending the Clique Percolation Method originally proposed for undirected networks. After giving a suitable definition for directed modules we investigate their percolation transition in the Erdos-Renyi graph both analytically and numerically. We also analyse four real-world directed networks, including Google's own webpages, an email network, a word association graph and the transcriptional regulatory network of the yeast Saccharomyces cerevisiae. The obtained directed modules are validated by additional information available for the nodes. We find that directed modules of real-world graphs inherently overlap and the investigated networks can be classified into two major groups in terms of the overlaps between the modules. Accordingly, in the word-association network and among Google's webpages the overlaps are likely to contain in-hubs, whereas the modules in the email and transcriptional regulatory networks tend to overlap via out-hubs.Comment: 21 pages, 10 figures, version 2: added two paragaph

    On the homomorphism order of labeled posets

    Get PDF
    Partially ordered sets labeled with k labels (k-posets) and their homomorphisms are examined. We give a representation of directed graphs by k-posets; this provides a new proof of the universality of the homomorphism order of k-posets. This universal order is a distributive lattice. We investigate some other properties, namely the infinite distributivity, the computation of infinite suprema and infima, and the complexity of certain decision problems involving the homomorphism order of k-posets. Sublattices are also examined.Comment: 14 page

    Dichotomy Results for Fixed Point Counting in Boolean Dynamical Systems

    Get PDF
    We present dichotomy theorems regarding the computational complexity of counting fixed points in boolean (discrete) dynamical systems, i.e., finite discrete dynamical systems over the domain {0, 1}. For a class F of boolean functions and a class G of graphs, an (F, G)-system is a boolean dynamical system with local transitions functions lying in F and graphs in G. We show that, if local transition functions are given by lookup tables, then the following complexity classification holds: Let F be a class of boolean functions closed under superposition and let G be a graph class closed under taking minors. If F contains all min-functions, all max-functions, or all self-dual and monotone functions, and G contains all planar graphs, then it is #Pcomplete to compute the number of fixed points in an (F, G)-system; otherwise it is computable in polynomial time. We also prove a dichotomy theorem for the case that local transition functions are given by formulas (over logical bases). This theorem has a significantly more complicated structure than the theorem for lookup tables. A corresponding theorem for boolean circuits coincides with the theorem for formulas
    corecore