12 research outputs found
Silicon carbide particulates incorporated into microalloyed steel surface using TIG: microstructure and properties
Surface metal matrix composites have been developed to enhance properties such as erosion, wear and corrosion of alloys. In this study, ~5 µm or ~75 µm SiC particulates were preplaced on a microalloyed steel. Single track surface zones were melted by a tungsten inert gas torch, and the effect of two heat inputs, 420Jmm-1 and 840 Jmm-1,compared. The results showed that the samples melted using 420Jmm-1 were crack-free. Pin-on-disk wear testing under dry sliding conditions were conducted. The effects of load and sliding velocity were used to characterise the performance of the crack-free samples. Microstructural and X-ray diffraction studies of the surface showed that the SiC had dissolved, and that martensite, was the main phase influencing the hardness
Avaliação da Técnica de Voltametria Linear para Determinação Quantitativa de Fase Sigma no Aço Inoxidável Duplex UNS S31803
Investigation on Ti6Al4V-V-Cr-Fe-SS316 Multi-layers Metallic Structure Fabricated by Laser 3D Printing
Selective Ablation of GIRK Channels in Dopamine Neurons Alters Behavioral Effects of Cocaine in Mice
Effect of Heat Input on Microstructure and Corrosion Behavior of Duplex Stainless Steel Shielded Metal Arc Welds
Hyperactivation of HUSH complex function by Charcot–Marie–Tooth disease mutation in MORC2
Dominant mutations in the MORC2 gene have recently been shown to cause axonal Charcot-Marie-Tooth (CMT) disease, but the cellular function of MORC2 is poorly understood. Here, through a genome-wide CRISPR-Cas9-mediated forward genetic screen, we identified MORC2 as an essential gene required for epigenetic silencing by the HUSH complex. HUSH recruits MORC2 to target sites in heterochromatin. We exploited a new method, differential viral accessibility (DIVA), to show that loss of MORC2 results in chromatin decompaction at these target loci, which is concomitant with a loss of H3K9me3 deposition and transcriptional derepression. The ATPase activity of MORC2 is critical for HUSH-mediated silencing, and the most common alteration affecting the ATPase domain in CMT patients (p.Arg252Trp) hyperactivates HUSH-mediated repression in neuronal cells. These data define a critical role for MORC2 in epigenetic silencing by the HUSH complex and provide a mechanistic basis underpinning the role of MORC2 mutations in CMT disease
