62 research outputs found

    Medullary control of nociceptive transmission: reciprocal dual communication with the spinal cord

    Get PDF
    Control of pain perception, essential for organism surviving and recovery from disease, is exerted by higher brain centers integrating nociception with emotional and cognitive information and modulating the brainstem-spinal feedback loops that regulate spinal nociceptive transmission. Development of chronic pain deregulates the forebrain-brainstem-spinal pain control system, which leads to neuroplasticity and disruption of a balanced brain-spinal communication. Targets for impeding pain chronification are being developed using the manipulation of the cross talk between brain and dorsal horn, at both sites of the loop.FCT -Fuel Cell Technologies Program(POCTI/NSE/46399/2002

    Brain afferents to the medullary dorsal reticular nucleus: a retrograde and anterograde tracing study in the rat

    Get PDF
    The medullary dorsal reticular nucleus (DRt) was recently shown to belong to the supraspinal pain control system; neurons within this nucleus give origin to a descending projection that increases spinal nociceptive transmission and facilitates pain perception [Almeida et al. (1999), Eur. J. Neurosci., 11, 110-122]. In the present study, the areas of the brain that may modulate the activity of DRt neurons were investigated by using of tract-tracing techniques. Injection of a retrograde tracer into the DRt resulted in labelling in multiple areas of the brain. In the contralateral orbital, prelimbic, infralimbic, insular, motor and somatosensory cortices labelling was prominent, but a smaller ipsilateral projection from these same areas was also detected. Strong labelling was also noted in the central amygdaloid nucleus, bed nucleus of stria terminalis and substantia innominata. Labelled diencephalic areas were mainly confined to the hypothalamus, namely its lateral and posterior areas as well as the paraventricular nucleus. In the mesencephalon, the periaqueductal grey, red nucleus and deep mesencephalic nucleus were strongly labelled, whereas, in the brainstem, the parabrachial nuclei, rostroventromedial medulla, nucleus tractus solitarius, spinal trigeminal nucleus, and the parvocellular, dorsal, lateral and ventral reticular nuclei were the most densely labelled regions. All deep cerebellar nuclei were labelled bilaterally. These data suggest that the DRt integrates information from the somatosensory, antinociceptive, autonomic, limbic, pyramidal and extrapyramidal systems while triggering its descending facilitating action upon the spinal nociceptive transmission.BIOTECH project n° BIO4-CT98-007676.Pain Gulbenkian Programme.Fundação para a Ciência e a Tecnologia (FCT) - project POCTI/NSE/38952/2001

    Microglial responses to amyloid β peptide opsonization and indomethacin treatment

    Get PDF
    BACKGROUND: Recent studies have suggested that passive or active immunization with anti-amyloid β peptide (Aβ) antibodies may enhance microglial clearance of Aβ deposits from the brain. However, in a human clinical trial, several patients developed secondary inflammatory responses in brain that were sufficient to halt the study. METHODS: We have used an in vitro culture system to model the responses of microglia, derived from rapid autopsies of Alzheimer's disease patients, to Aβ deposits. RESULTS: Opsonization of the deposits with anti-Aβ IgG 6E10 enhanced microglial chemotaxis to and phagocytosis of Aβ, as well as exacerbated microglial secretion of the pro-inflammatory cytokines TNF-α and IL-6. Indomethacin, a common nonsteroidal anti-inflammatory drug (NSAID), had no effect on microglial chemotaxis or phagocytosis, but did significantly inhibit the enhanced production of IL-6 after Aβ opsonization. CONCLUSION: These results are consistent with well known, differential NSAID actions on immune cell functions, and suggest that concurrent NSAID administration might serve as a useful adjunct to Aβ immunization, permitting unfettered clearance of Aβ while dampening secondary, inflammation-related adverse events

    Inflammatory Mechanisms in Parkinson's Disease

    No full text
    corecore