1,134 research outputs found
G Electronics and Data Acquisition (Forward-Angle Measurements)
The G parity-violation experiment at Jefferson Lab (Newport News, VA) is
designed to determine the contribution of strange/anti-strange quark pairs to
the intrinsic properties of the proton. In the forward-angle part of the
experiment, the asymmetry in the cross section was measured for
elastic scattering by counting the recoil protons corresponding to the two
beam-helicity states. Due to the high accuracy required on the asymmetry, the
G experiment was based on a custom experimental setup with its own
associated electronics and data acquisition (DAQ) system. Highly specialized
time-encoding electronics provided time-of-flight spectra for each detector for
each helicity state. More conventional electronics was used for monitoring
(mainly FastBus). The time-encoding electronics and the DAQ system have been
designed to handle events at a mean rate of 2 MHz per detector with low
deadtime and to minimize helicity-correlated systematic errors. In this paper,
we outline the general architecture and the main features of the electronics
and the DAQ system dedicated to G forward-angle measurements.Comment: 35 pages. 17 figures. This article is to be submitted to NIM section
A. It has been written with Latex using \documentclass{elsart}. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment In Press (2007
Results from the test bench of the Geometry Monitoring System of the ALICE Muon Spectrometer
We present the results obtained with the test bench of the Geometry Monitoring System (GMS) for the ALICE Muon Spectrometer. It consists in a mock up, reproducing at full scale, three half planes of the chambers 6, 7 and 8 of the spectrometer. We show that the GMS is able to measure transverse displacements with an accuracy of 1.5 microm. We show also that the resolution deteriorates by a factor 3 to 4 when thermal gradients are generated
A precise measurement of the deuteron elastic structure function A(Q^2)
The A(Q^2) structure function in elastic electron-deuteron scattering was
measured at six momentum transfers Q^2 between 0.66 and 1.80 (GeV/c)^2 in Hall
C at Jefferson Laboratory. The scattered electrons and recoil deuterons were
detected in coincidence, at a fixed deuteron angle of 60.5 degrees. These new
precise measurements resolve discrepancies between older sets of data. They put
significant constraints on existing models of the deuteron electromagnetic
structure, and on the strength of isoscalar meson exchange currents.Comment: 3 LaTeX pages plus 2 PS figure
Measurement of Tensor Polarization in Elastic Electron-Deuteron Scattering at Large Momentum Transfer
Tensor polarization observables (t20, t21 and t22) have been measured in
elastic electron-deuteron scattering for six values of momentum transfer
between 0.66 and 1.7 (GeV/c)^2. The experiment was performed at the Jefferson
Laboratory in Hall C using the electron HMS Spectrometer, a specially designed
deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new
data determine to much larger Q^2 the deuteron charge form factors G_C and G_Q.
They are in good agreement with relativistic calculations and disagree with
pQCD predictions.Comment: 5 pages, 4 figures, for associated informations, see
http://isnwww.in2p3.fr/hadrons/t20/t20_ang.html clarification about several
topics, one figure has been had, extraction of form factors use AQ
interpolation in our Q2 range onl
Formula for proton-nucleus reaction cross section at intermediate energies and its application
We construct a formula for proton-nucleus total reaction cross section as a
function of the mass and neutron excess of the target nucleus and the proton
incident energy. We deduce the dependence of the cross section on the mass
number and the proton incident energy from a simple argument involving the
proton optical depth within the framework of a black sphere approximation of
nuclei, while we describe the neutron excess dependence by introducing the
density derivative of the symmetry energy, L, on the basis of a radius formula
constructed from macroscopic nuclear models. We find that the cross section
formula can reproduce the energy dependence of the cross section measured for
stable nuclei without introducing any adjustable energy dependent parameter. We
finally discuss whether or not the reaction cross section is affected by an
extremely low density tail of the neutron distribution for halo nuclei.Comment: 7 pages, 4 figures, added reference
Phenomenology of the Deuteron Electromagnetic Form Factors
A rigorous extraction of the deuteron charge form factors from tensor
polarization data in elastic electron-deuteron scattering, at given values of
the 4-momentum transfer, is presented. Then the world data for elastic
electron-deuteron scattering is used to parameterize, in three different ways,
the three electromagnetic form factors of the deuteron in the 4-momentum
transfer range 0-7 fm^-1. This procedure is made possible with the advent of
recent polarization measurements. The parameterizations allow a
phenomenological characterization of the deuteron electromagnetic structure.
They can be used to remove ambiguities in the form factors extraction from
future polarization data.Comment: 18 pages (LaTeX), 2 figures Feb. 25: minor changes of content and in
Table
Parity-violating Electron Deuteron Scattering and the Proton's Neutral Weak Axial Vector Form Factor
We report on a new measurement of the parity-violating asymmetry in
quasielastic electron scattering from the deuteron at backward angles at Q2=
0.038 (GeV/c)2. This quantity provides a determination of the neutral weak
axial vector form factor of the nucleon, which can potentially receive large
electroweak corrections. The measured asymmetry A=-3.51 +/- 0.57(stat) +/-
0.58(sys)ppm is consistent with theoretical predictions. We also report on
updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also
consistent with theoretical predictions.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
Parity-violating Electron Deuteron Scattering and the Proton's Neutral Weak Axial Vector Form Factor
We report on a new measurement of the parity-violating asymmetry in
quasielastic electron scattering from the deuteron at backward angles at Q2=
0.038 (GeV/c)2. This quantity provides a determination of the neutral weak
axial vector form factor of the nucleon, which can potentially receive large
electroweak corrections. The measured asymmetry A=-3.51 +/- 0.57(stat) +/-
0.58(sys)ppm is consistent with theoretical predictions. We also report on
updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also
consistent with theoretical predictions.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
The Quasielastic 3He(e,e'p)d Reaction at Q^2 = 1.5 GeV^2 for Recoil Momenta up to 1 GeV/c
We have studied the quasielastic 3He(e,e'p)d reaction in perpendicular
coplanar kinematics, with the energy and momentum transferred by the electron
fixed at 840 MeV and 1502 MeV/c, respectively. The 3He(e,e'p)d cross section
was measured for missing momenta up to 1000 MeV/c, while the A_TL asymmetry was
extracted for missing momenta up to 660 MeV/c. For missing momenta up to 150
MeV/c, the measured cross section is described well by calculations that use a
variational ground-state wave function of the 3He nucleus derived from a
potential that includes three-body forces. For missing momenta from 150 to 750
MeV/c, strong final-state interaction effects are observed. Near 1000 MeV/c,
the experimental cross section is more than an order of magnitude larger than
predicted by available theories. The A_TL asymmetry displays characteristic
features of broken factorization, and is described reasonably well by available
models.Comment: 5 pages, 3 figures, submitted to Physical Review Letters, v3: changed
conten
- …
