393 research outputs found
Longitudinal phase space manipulation in energy recovering linac-driven free-electron lasers
Energy recovering an electron beam after it has participated in a
free-electron laser (FEL) interaction can be quite challenging because of the
substantial FEL-induced energy spread and the energy anti-damping that occurs
during deceleration. In the Jefferson Lab infrared FEL driver-accelerator, such
an energy recovery scheme was implemented by properly matching the longitudinal
phase space throughout the recirculation transport by employing the so-called
energy compression scheme. In the present paper,after presenting a
single-particle dynamics approach of the method used to energy-recover the
electron beam, we report on experimental validation of the method obtained by
measurements of the so-called "compression efficiency" and "momentum
compaction" lattice transfer maps at different locations in the recirculation
transport line. We also compare these measurements with numerical tracking
simulations.Comment: 31 pages, 13 figures, submitted to Phys. Rev. Special Topics A&
Recommended from our members
Raman-spectroscopy based cell identification on a microhole array chip
Circulating tumor cells (CTCs) from blood of cancer patients are valuable prognostic markers and enable monitoring responses to therapy. The extremely low number of CTCs makes their isolation and characterization a major technological challenge. For label-free cell identification a novel combination of Raman spectroscopy with a microhole array platform is described that is expected to support high-throughput and multiplex analyses. Raman spectra were registered from regularly arranged cells on the chip with low background noise from the silicon nitride chip membrane. A classification model was trained to distinguish leukocytes from myeloblasts (OCI-AML3) and breast cancer cells (MCF-7 and BT-20). The model was validated by Raman spectra of a mixed cell population. The high spectral quality, low destructivity and high classification accuracy suggests that this approach is promising for Raman activated cell sorting
HOM and Impedance Study of RF Separators for LCLS-II
The LCLS-II upgrade requires an rf spreader system to guide bunches into a switchyard delivering beam to two undulators and the primary beam dump. The beam pattern therefore needs a 3-way beam spreader. An rf deflecting cavity concept was proposed that includes both superconducting and normal conducting options. We characterize the higher order modes (HOM) of these rf separator cavities and evaluate beam dynamics effects due to potential HOM excitation. This study includes both short term wake and multi-bunch effects
Crab Crossing Schemes and Studies for Electron Ion Collider
This report shows our progress in crab crossing consideration for future electron-ion collider envisioned at JLab. In this design phase, we are evaluating two crabbing schemes viz., the deflecting and dispersive. The mathematical formulations and lattice design for these schemes are discussed in this paper. Numerical simulations involving particle tracking through a realistic deflecting RF cavity and optics illustrate the desired crab tilt of 25 mrad for 1.35 MV. Evolution of beam propagation are shown which provides the physical insight of the crabbing phenomenon
Probing the action of a novel anti-leukaemic drug therapy at the single cell level using modern vibrational spectroscopy techniques
Acute myeloid leukaemia (AML) is a life threatening cancer for which there is an urgent clinical need for novel therapeutic approaches. A redeployed drug combination of bezafibrate and medroxyprogesterone acetate (BaP) has shown anti-leukaemic activity in vitro and in vivo. Elucidation of the BaP mechanism of action is required in order to understand how to maximise the clinical benefit. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Synchrotron radiation FTIR (S-FTIR) and Raman microspectroscopy are powerful complementary techniques which were employed to probe the biochemical composition of two AML cell lines in the presence and absence of BaP. Analysis was performed on single living cells along with dehydrated and fixed cells to provide a large and detailed data set. A consideration of the main spectral differences in conjunction with multivariate statistical analysis reveals a significant change to the cellular lipid composition with drug treatment; furthermore, this response is not caused by cell apoptosis. No change to the DNA of either cell line was observed suggesting this combination therapy primarily targets lipid biosynthesis or effects bioactive lipids that activate specific signalling pathways
Biomarkers in Urachal Cancer and Adenocarcinomas in the Bladder: A Comprehensive Review Supplemented by Own Data
Urachal cancer (UrC) is a rare but aggressive cancer. Due to overlapping histomorphology, discrimination of urachal from primary bladder adenocarcinomas (PBAC) and adenocarcinomas secondarily involving the bladder (particularly colorectal adenocarcinomas, CRC) can be challenging. Therefore, we aimed to give an overview of helpful (immunohistochemical) biomarkers and clinicopathological factors in addition to survival analyses and included institutional data from 12 urachal adenocarcinomas. A PubMed search yielded 319 suitable studies since 1930 in the English literature with 1984 cases of UrC including 1834 adenocarcinomas (92%) and 150 nonadenocarcinomas (8%). UrC was more common in men (63%), showed a median age at diagnosis of 50.8 years and a median tumor size of 6.0 cm. No associations were noted for overall survival and progression-free survival (PFS) and clinicopathological factors beside a favorable PFS in male patients (p = 0.047). The immunohistochemical markers found to be potentially helpful in the differential diagnostic situation are AMACR and CK34betaE12 (UrC versus CRC and PBAC), CK7, beta-Catenin and CD15 (UrC and PBAC versus CRC), and CEA and GATA3 (UrC and CRC versus PBAC). Serum markers like CEA, CA19-9 and CA125 might additionally be useful in the follow-up and monitoring of UrC
Beam Dynamics Studies of Parallel-Bar Deflecting Cavities
We have performed three-dimensional simulations of beam dynamics for parallel-bar transverse electromagnetic mode (TEM) type RF separators: normal- and superconducting. The compact size of these cavities as compared to conventional TM110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of eight 2-cell normal conducting cavities or a one- or two-cell superconducting structure are enough to produce the required vertical displacement at the Lambertson magnet. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam
Beam Dynamics Studies for Transverse Electromagnetic Mode Type rf Deflectors
We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam
Three-dimensional Magnetic Resonance Imaging–based Printed Models of Prostate Anatomy and Targeted Biopsy-proven Index Tumor to Facilitate Patient-tailored Radical Prostatectomy—A Feasibility Study
In this prospective single-center feasibility study, we demonstrate that the use of three-dimensional (3D)-printed prostate models support nerve-sparing radical prostatectomy (RP) and intraoperative frozen sectioning (IFS) in ten men suffering from intermediate- and high-risk prostate cancer (PC), of whom seven harbored pT3 disease. Patient-specific 3D resin models were printed based on preoperative multiparametric magnetic resonance imaging (mpMRI) to provide an exact 3D impression of significant tumor lesions. RP and IFS were planned in a patient-tailored fashion. The 36-region Prostate Imaging Reporting and Data System (PI-RADS) v2.0 scheme was used to compare the MRI/3D print with whole-mount histopathology. In all cases, localization of the index lesion was correctly displayed by MRI and the 3D model. Localization of significant PC lesions correlated significantly (Pearson`s correlation coefficient of 0.88; p < 0.001). In addition, a significant correlation of the width, length, and volume of the tumor and prostate gland, derived from the printed model and histopathology, was found, using Pearson's correlation analyses and Bland-Altman plots. In conclusion, 3D-printed prostate models correlate well with final pathology and can be used to tailor RP. PATIENT SUMMARY: The use of three-dimensional (3D)-printed prostate models based on preoperative magnetic resonance imaging (MRI) may improve prostatectomy outcome. This study confirmed the accuracy of 3D-printed prostates compared with pathology from radical prostatectomy specimens. Thus, MRI-derived 3D-printed prostate models can assist in prostate cancer surgery
The role of leadership in salespeople’s price negotiation behavior
Salespeople assume a key role in defending firms’ price levels in price negotiations with customers. The degree to which salespeople defend prices should critically depend upon their leaders’ influence. However, the influence of leadership on salespeople’s price defense behavior is barely understood, conceptually or empirically. Therefore, building on social learning theory, the authors propose that salespeople might adopt their leaders’ price defense behavior given a transformational leadership style. Furthermore, drawing on the contingency leadership perspective, the authors argue that this adoption fundamentally depends on three variables deduced from the motivation–ability–opportunity (MAO) framework, that is, salespeople’s learning motivation, negotiation efficacy, and perceived customer lenience. Results of a multi-level model using data from 92 salespeople and 264 salesperson–customer interactions confirm these predictions. The first to explore contingencies of salespeople’s adoption of their transformational leaders’ price negotiation behaviors, this study extends marketing theory and provides actionable guidance to practitioners
- …
