6,422 research outputs found

    Nonreciprocal Dispersion of Spin Waves in Ferromagnetic Thin Films Covered with a Finite-Conductivity Metal

    Full text link
    We study the effect of one-side metallization of a uniform ferromagnetic thin film on its spin-wave dispersion relation in the Damon-Eshbach geometry. Due to the finite conductivity of the metallic cover layer on the ferromagnetic film the spin-wave dispersion relation may be nonreciprocal only in a limited wave-vector range. We provide an approximate analytical solution for the spin-wave frequency, discuss its validity and compare it with numerical results. The dispersion is analyzed systematically by varying the parameters of the ferromagnetic film, the metal cover layer and the value of the external magnetic field. The conclusions drawn from this analysis allow us to define a structure based on a 30 nm thick CoFeB film with an experimentally accessible nonreciprocal dispersion relation in a relatively wide wave-vector range.Comment: 9 pages, 6 figure

    Communities and classes in symmetric fractals

    Full text link
    Two aspects of fractal networks are considered: the community structure and the class structure, where classes of nodes appear as a consequence of a local symmetry of nodes. The analysed systems are the networks constructed for two selected symmetric fractals: the Sierpinski triangle and the Koch curve. Communities are searched for by means of a set of differential equations. Overlapping nodes which belong to two different communities are identified by adding some noise to the initial connectivity matrix. Then, a node can be characterized by a spectrum of probabilities of belonging to different communities. Our main goal is that the overlapping nodes with the same spectra belong to the same class

    Testing 2HDM at Muon Colliders

    Full text link
    One very light neutral Higgs scalar with mass, say, below 40-50 GeV is still allowed in the non-supersymmetric 2HDM (Model II), while the remaining particles of the Higgs sector in this model have to be heavier. The possibility of testing such a scenario at Muon Colliders is discussed.Comment: 6 pages, 4 Postscript figures, uses aipproc.sty. Presented at the Workshop on Physics at the First Muon Collider and at the Front End of a Muon Collider, Fermilab, November 199

    CJK-Improved 5 Flavour LO Parton Distributions in the Real Photon

    Full text link
    Radiatively generated, LO quark (u,d,s,c,b) and gluon densities in the real, unpolarized photon, improved in respect to our previous paper, are presented. We perform three global fits to the F_2^gamma data, using the LO DGLAP evolution equation. We improve the treatment of the strong coupling running and used lower values of Lambda_QCD, as we have found that the too high values adopted in the previous work caused the high chi^2 of the fits. In addition to the modified FFNS_CJKL model, referred to as FFNS_CJK 1 we analyse a FFNS_CJK 2 model in which we take into account the resolved-photon heavy-quark contribution. New CJK model with an improved high-x behavior of the F_2^gamma(x,Q^2) is proposed. Finally, in the case of the CJK model we abandon the valence sum rule imposed on the VMD input densities. New fits give chi^2 per degree of freedom about 0.25 better than the old results. All features of the CJKL model, such as the realistic heavy-quark distributions, good description of the LEP data on the Q^2 dependence of the F_2^gamma and on F_2,c^gamma are preserved. Moreover we present results of an analysis of the uncertainties of the CJK parton distributions due to the experimental errors. It is based on the Hessian method used for the proton and very recently applied for the photon by one of us. Parton and structure function parametrizations of the best fits in both FFNS_CJK and CJK approaches are made accessible. For the CJK model we provide also sets of test parametrizations which allow for calculation of uncertainties of any physical value depending on the real photon parton densities.Comment: 27 pages, 14 figures, FORTRAN programs available at http://www.fuw.edu.pl/~pjank/param.htm

    Non-uniform spin wave softening in 2D magnonic crystals as a tool for opening omnidirectional magnonic band gaps

    Full text link
    By means of the plane wave method we study spin wave dynamics in two-dimensional bi-component magnonic crystals based on a squeezed hexagonal lattice and consist of a permalloy thin film with cobalt inclusions. We explore the dependence of a spin wave frequency on the external magnetic field, especially in weak fields where the mode softening takes place. For considered structures, the mode softening proves to be highly non-uniform on both the mode number and the wave vector. We found this effect to be responsible for the omnidirectional band gap opening. Moreover, we show that the enhancement of the demagnetizing field caused by the squeezing of the structure is of crucial importance for the non-uniform mode softening. This allows us to employ this mechanism to design magnonic gaps with different sensitivity for the tiny change of the external field. The effects we have found should be useful in designing and optimization of spin wave filters highly tunable by a small external magnetic field.Comment: Final versio
    corecore