5,695 research outputs found

    The importance of the electronic contribution to linear magnetoelectricity

    Full text link
    We demonstrate that the electronic contribution to the linear magnetoelectric response, usually omitted in first-principles studies, can be comparable in magnitude to that mediated by lattice distortions, even for materials in which responses are strong. Using a self-consistent Zeeman response to an applied magnetic field for noncollinear electron spins, we show how electric polarization emerges in linear magnetoelectrics through both electronic- and lattice-mediated components -- in analogy with the high- and low-frequency dielectric response to an electric field. The approach we use is conceptually and computationally simple, and can be applied to study both linear and non-linear responses to magnetic fields.Comment: 5 pages, 3 figure

    Baryon Destruction by Asymmetric Dark Matter

    Full text link
    We investigate new and unusual signals that arise in theories where dark matter is asymmetric and carries a net antibaryon number, as may occur when the dark matter abundance is linked to the baryon abundance. Antibaryonic dark matter can cause {\it induced nucleon decay} by annihilating visible baryons through inelastic scattering. These processes lead to an effective nucleon lifetime of 10^{29}-10^{32} years in terrestrial nucleon decay experiments, if baryon number transfer between visible and dark sectors arises through new physics at the weak scale. The possibility of induced nucleon decay motivates a novel approach for direct detection of cosmic dark matter in nucleon decay experiments. Monojet searches (and related signatures) at hadron colliders also provide a complementary probe of weak-scale dark-matter--induced baryon number violation. Finally, we discuss the effects of baryon-destroying dark matter on stellar systems and show that it can be consistent with existing observations.Comment: 26 pages, 6 figure

    Hylogenesis: A Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter

    Full text link
    We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the Standard Model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced non-thermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.Comment: Footnote 1 restored after omission in v2; no other correction

    Dynamical Masses of RCS Galaxy Clusters

    Full text link
    A multi-object spectroscopy follow-up survey of galaxy clusters selected from the Red-sequence Cluster Survey (RCS) is being completed. About forty clusters were chosen with redshifts from 0.15 to 0.6, and in a wide range of richnesses. One of the main science drivers of this survey is a study of internal dynamics of clusters. We present some preliminary results for a subset of the clusters, including the correlation of optical richness with mass, and the mass-to-light ratio as a function of cluster mass.Comment: 5 pages, 5 figures, to appear in the Proceedings of IAU Colloquium 195: "Outskirts of Galaxy Clusters: intense life in the suburbs", Torino Italy, March 200

    Optimal Monte Carlo Updating

    Get PDF
    Based on Peskun's theorem it is shown that optimal transition matrices in Markov chain Monte Carlo should have zero diagonal elements except for the diagonal element corresponding to the largest weight. We will compare the statistical efficiency of this sampler to existing algorithms, such as heat-bath updating and the Metropolis algorithm. We provide numerical results for the Potts model as an application in classical physics. As an application in quantum physics we consider the spin 3/2 XY model and the Bose-Hubbard model which have been simulated by the directed loop algorithm in the stochastic series expansion framework.Comment: 6 pages, 5 figures, replaced with published versio

    Dark Matter Antibaryons from a Supersymmetric Hidden Sector

    Full text link
    The cosmological origin of both dark and baryonic matter can be explained through a unified mechanism called hylogenesis where baryon and antibaryon number are divided between the visible sector and a GeV-scale hidden sector, while the Universe remains net baryon symmetric. The "missing" antibaryons, in the form of exotic hidden states, are the dark matter. We study model-building, cosmological, and phenomenological aspects of this scenario within the framework of supersymmetry, which naturally stabilizes the light hidden sector and electroweak mass scales. Inelastic dark matter scattering on visible matter destroys nucleons, and nucleon decay searches offer a novel avenue for the direct detection of the hidden antibaryonic dark matter sea.Comment: 33 pages, 10 figures. Minor changes to match published versio
    corecore