85 research outputs found

    Visualization of toner ink adsorption at bubble surfaces

    Get PDF
    Flotation deinking involves interactions between inks particles and bubbles surfaces. These interactions are very difficult to observe directly or to quantify in bench-scale experiments or mill operations, making it difficult to evaluate effects of process conditions such as bubble size and solution chemistry on deinking efficiency. This paper presents images and measurements of toner ink interactions with bubble surfaces in laboratory-scale flotation processes. Stable adsorption of toner ink was observed at surfaces of stationary and suspended bubbles for several system chemistries. Interactions of toner particles and bubbles were quantified by high magnification and high temporal resolution digital videos obtained in bubble flow facilities creating both stationary and flowing bubbles. Large (>200 micron), flat toner particles adsorbed to bubble surfaces by single contact points. Smaller toner particles formed very stable complexes in fatty acid chemistries. Desorption of toner ink from bubble surfaces was not observed, even for vigorous flows. Bubbles were observed to be fully covered with toner after 4 minutes of residence time in the suspending bubble flow facility. Initial estimates indicate that bubbles with diameters of approximately 1 mm carry more than 1 mg of ink per bubble

    Explorations, Vol. 3, No. 3

    Get PDF
    Cover: Artwork by Marcia Spencer, University of Maine art student. Articles include: Characterization of Normal and Carcinogen Induced Neoplastic Cells of Teleost Origin, by Tim Lyden Attitutdes and Opinions of Maine Dairy Farmers, by John Muth and James Leiby Background: the quest for the eighteen month oyster, by Kevin Scully The Quest for the Eighteen Month Oyster, by Kevin Scully Measurement of Surface Tension of Kraft Black Liquor, by Jayalakshmi Jaya Krishnagopalan From the former student, by Jayalakshmi Krishnagopalan From the faculty advisor, by Ivar H. Stockel Aquatic Fungal Decomposers in Two Adjacent Maine Lakes of Different Acidity, by Peter Wagner Studies on a New Mouse Mutation, by Luanne L. Peters Opportunities for Students: Maine Agricultural Experiment Station Research Programs, by Mark W. Anderson Experimental Embryogenesis in Red Pine, by Judy C. Gates The V-Notched Lobster in Maine, by Cheryl Waltz Undernutrition in a Pediatric Population, by Paula Quatromoni From the Advisor Archaeology of the Central Maine Coast, by Douglas Kellogg Marketing Strategies for Computer Consultants in Small Business, by Kimberly Dagher Our Cover Artist From the Advisor, by James Lineha

    Tenecteplase for ST-elevation myocardial infarction in a patient treated with drotrecogin alfa (activated) for severe sepsis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Drotrecogin alfa (activated) (DrotAA), an activated protein C, promotes fibrinolysis in patients with severe sepsis. There are no reported cases or studies that address the diagnosis and treatment of myocardial infarction in septic patients treated with DrotAA.</p> <p>Case presentation</p> <p>A 59-year-old Caucasian man with septic shock secondary to community-acquired pneumonia treated with DrotAA, subsequently developed an ST-elevation myocardial infarction 12 hours after starting DrotAA. DrotAA was stopped and the patient was given tenecteplase thrombolysis resulting in complete resolution of ST-elevation and no adverse bleeding events. DrotAA was restarted to complete the 96-hour course. The sepsis resolved and the patient was discharged from hospital.</p> <p>Conclusion</p> <p>In patients with severe sepsis or septic shock complicated by myocardial infarction, it is difficult to determine if the myocardial infarction is an isolated event or caused by the sepsis process. The efficacy and safety of tenecteplase thrombolysis in septic patients treated with DrotAA need further study.</p

    A lesson in valves and fittings

    No full text

    Development of multimedia course modules for engineering education at Tuskegee University

    No full text

    Effective Alkali Dynamics in Modified Cooking:  Fundamental Modeling

    Full text link

    Effective Alkali Dynamics in Modified Cooking:  Fundamental Modeling

    No full text
    corecore