25 research outputs found
Meeting report: 5th Global Forum on TB Vaccines, 20-23 February 2018, New Delhi India
The 5th Global Forum on TB Vaccines was held in New Delhi, India from 20 to 23 February 2018. This was the largest Global Forum on TB Vaccines to date with nearly 350 participants from more than 30 countries. The program included over 60 speakers in 12 special, plenary and breakout sessions and 72 posters. This Global Forum brought a great sense of momentum and excitement to the field. New vaccines are in clinical trials, new routes of delivery are being tested, novel assays and biomarker signatures are being developed, and the results from the first prevention of infection clinical trial with the H4:IC31 vaccine candidate and BCG revaccination were presented. Speakers and participants acknowledged the significant challenges that the TB vaccine R&D field continues to face - including limited funding, and the need for novel effective vaccine candidates and tools such as improved diagnostics and biomarkers to accurately predict protective efficacy. New solutions and approaches to address these challenges were discussed. The following report presents highlights from talks presented at this Global Forum. A full program, abstract book and presentations (where publicly available) from the Forum may be found at tbvaccinesforum.org
EspA Acts as a Critical Mediator of ESX1-Dependent Virulence in Mycobacterium tuberculosis by Affecting Bacterial Cell Wall Integrity
Mycobacterium tuberculosis (Mtb) requires the ESX1 specialized protein secretion system for virulence, for triggering cytosolic immune surveillance pathways, and for priming an optimal CD8+ T cell response. This suggests that ESX1 might act primarily by destabilizing the phagosomal membrane that surrounds the bacterium. However, identifying the primary function of the ESX1 system has been difficult because deletion of any substrate inhibits the secretion of all known substrates, thereby abolishing all ESX1 activity. Here we demonstrate that the ESX1 substrate EspA forms a disulfide bonded homodimer after secretion. By disrupting EspA disulfide bond formation, we have dissociated virulence from other known ESX1-mediated activities. Inhibition of EspA disulfide bond formation does not inhibit ESX1 secretion, ESX1-dependent stimulation of the cytosolic pattern receptors in the infected macrophage or the ability of Mtb to prime an adaptive immune response to ESX1 substrates. However, blocking EspA disulfide bond formation severely attenuates the ability of Mtb to survive and cause disease in mice. Strikingly, we show that inhibition of EspA disulfide bond formation also significantly compromises the stability of the mycobacterial cell wall, as does deletion of the ESX1 locus or individual components of the ESX1 system. Thus, we demonstrate that EspA is a major determinant of ESX1-mediated virulence independent of its function in ESX1 secretion. We propose that ESX1 and EspA play central roles in the virulence of Mtb in vivo because they alter the integrity of the mycobacterial cell wall
Regulation of Protein Secretion by … Protein Secretion?
Mycobacterium tuberculosis (Mtb) requires an alternative protein secretion system, ESX1, for virulence. Recently, Raghavan et al. (2008) reported a new regulatory circuit that may explain how ESX1 activity is controlled during infection. Mtb appears to regulate ESX1 by modulating transcription of associated genes rather than structural components of the secretion system itself
Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion
International audienc
DNA Substrate-Induced Activation of the Agrobacterium VirB/VirD4 Type IV Secretion System
International audienceABSTRACT The bitopic membrane protein VirB10 of the Agrobacterium VirB/VirD4 type IV secretion system (T4SS) undergoes a structural transition in response to sensing of ATP binding or hydrolysis by the channel ATPases VirD4 and VirB11. This transition, detectable as a change in protease susceptibility, is required for DNA substrate passage through the translocation channel. Here, we present evidence that DNA substrate engagement with VirD4 and VirB11 also is required for activation of VirB10. Several DNA substrates (oncogenic T-DNA and plasmids RSF1010 and pCloDF13) induced the VirB10 conformational change, each by mechanisms requiring relaxase processing at cognate oriT sequences. VirD2 relaxase deleted of its translocation signal or any of the characterized relaxases produced in the absence of cognate DNA substrates did not induce the structural transition. Translocated effector proteins, e.g., VirE2, VirE3, and VirF, also did not induce the transition. By mutational analyses, we supplied evidence that the N-terminal periplasmic loop of VirD4, in addition to its catalytic site, is essential for early-stage DNA substrate transfer and the VirB10 conformational change. Further studies of VirB11 mutants established that three T4SS-mediated processes, DNA transfer, protein transfer, and pilus production, can be uncoupled and that the latter two processes proceed independently of the VirB10 conformational change. Our findings support a general model whereby DNA ligand binding with VirD4 and VirB11 stimulates ATP binding/hydrolysis, which in turn activates VirB10 through a structural transition. This transition confers an open-channel configuration enabling passage of the DNA substrate to the cell surface
Agrobacterium tumefaciens oncogenic suppressors inhibit T-DNA and VirE2 protein substrate binding to the VirD4 coupling protein
International audienc
BIOGENESIS, ARCHITECTURE, AND FUNCTION OF BACTERIAL TYPE IV SECRETION SYSTEMS
International audienc
A Novel Cytology-Based, Two-Hybrid Screen for Bacteria Applied to Protein-Protein Interaction Studies of a Type IV Secretion System
DivIVA of Bacillus subtilis and FtsZ of Escherichia coli were used to target heterologous protein complexes to cell division sites of E. coli and Agrobacterium tumefaciens. DivIVA and FtsZ that were fused to the dimerizing leucine zipper (LZ) domain of the yeast transcription activator GCN4 directed the green fluorescent protein (GFP) that was fused to an LZ domain to E. coli division sites, resulting in fluorescence patterns identical to those observed with DivIVA::GFP and FtsZ::GFP. These cell division proteins also targeted the VirE1 chaperone and VirE2 secretion substrate complex to division sites of E. coli and A. tumefaciens. Coproduction of the native VirE1 or VirE2 proteins inhibited the dihybrid interaction in both species, as judged by loss of GFP targeting to division sites. The VirE1 chaperone bound independently to N- and C-terminal regions of VirE2, with a requirement for residues 84 to 147 and 331 to 405 for these interactions, as shown by dihybrid studies with VirE1::GFP and DivIVA fused to N- and C-terminal VirE2 fragments. DivIVA also targeted homo- and heterotypic complexes of VirB8 and VirB10, two bitopic inner membrane subunits of the A. tumefaciens T-DNA transfer system, in E. coli and homotypic complexes of VirB10 in A. tumefaciens. VirB10 self-association in bacteria was mediated by the C-terminal periplasmic domain, as shown by dihybrid studies with fusions to VirB10 truncation derivatives. Together, our findings establish a proof-of-concept for the use of cell-location-specific proteins for studies of interactions among cytosolic and membrane proteins in diverse bacterial species
