1,501 research outputs found

    POMDPs under Probabilistic Semantics

    Full text link
    We consider partially observable Markov decision processes (POMDPs) with limit-average payoff, where a reward value in the interval [0,1] is associated to every transition, and the payoff of an infinite path is the long-run average of the rewards. We consider two types of path constraints: (i) quantitative constraint defines the set of paths where the payoff is at least a given threshold lambda_1 in (0,1]; and (ii) qualitative constraint which is a special case of quantitative constraint with lambda_1=1. We consider the computation of the almost-sure winning set, where the controller needs to ensure that the path constraint is satisfied with probability 1. Our main results for qualitative path constraint are as follows: (i) the problem of deciding the existence of a finite-memory controller is EXPTIME-complete; and (ii) the problem of deciding the existence of an infinite-memory controller is undecidable. For quantitative path constraint we show that the problem of deciding the existence of a finite-memory controller is undecidable.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013

    Hyperplane Separation Technique for Multidimensional Mean-Payoff Games

    Full text link
    We consider both finite-state game graphs and recursive game graphs (or pushdown game graphs), that can model the control flow of sequential programs with recursion, with multi-dimensional mean-payoff objectives. In pushdown games two types of strategies are relevant: global strategies, that depend on the entire global history; and modular strategies, that have only local memory and thus do not depend on the context of invocation. We present solutions to several fundamental algorithmic questions and our main contributions are as follows: (1) We show that finite-state multi-dimensional mean-payoff games can be solved in polynomial time if the number of dimensions and the maximal absolute value of the weight is fixed; whereas if the number of dimensions is arbitrary, then problem is already known to be coNP-complete. (2) We show that pushdown graphs with multi-dimensional mean-payoff objectives can be solved in polynomial time. (3) For pushdown games under global strategies both single and multi-dimensional mean-payoff objectives problems are known to be undecidable, and we show that under modular strategies the multi-dimensional problem is also undecidable (whereas under modular strategies the single dimensional problem is NP-complete). We show that if the number of modules, the number of exits, and the maximal absolute value of the weight is fixed, then pushdown games under modular strategies with single dimensional mean-payoff objectives can be solved in polynomial time, and if either of the number of exits or the number of modules is not bounded, then the problem is NP-hard. (4) Finally we show that a fixed parameter tractable algorithm for finite-state multi-dimensional mean-payoff games or pushdown games under modular strategies with single-dimensional mean-payoff objectives would imply the solution of the long-standing open problem of fixed parameter tractability of parity games.Comment: arXiv admin note: text overlap with arXiv:1201.282

    Graph Planning with Expected Finite Horizon

    Full text link
    Graph planning gives rise to fundamental algorithmic questions such as shortest path, traveling salesman problem, etc. A classical problem in discrete planning is to consider a weighted graph and construct a path that maximizes the sum of weights for a given time horizon TT. However, in many scenarios, the time horizon is not fixed, but the stopping time is chosen according to some distribution such that the expected stopping time is TT. If the stopping time distribution is not known, then to ensure robustness, the distribution is chosen by an adversary, to represent the worst-case scenario. A stationary plan for every vertex always chooses the same outgoing edge. For fixed horizon or fixed stopping-time distribution, stationary plans are not sufficient for optimality. Quite surprisingly we show that when an adversary chooses the stopping-time distribution with expected stopping time TT, then stationary plans are sufficient. While computing optimal stationary plans for fixed horizon is NP-complete, we show that computing optimal stationary plans under adversarial stopping-time distribution can be achieved in polynomial time. Consequently, our polynomial-time algorithm for adversarial stopping time also computes an optimal plan among all possible plans

    The Value 1 Problem Under Finite-memory Strategies for Concurrent Mean-payoff Games

    Get PDF
    We consider concurrent mean-payoff games, a very well-studied class of two-player (player 1 vs player 2) zero-sum games on finite-state graphs where every transition is assigned a reward between 0 and 1, and the payoff function is the long-run average of the rewards. The value is the maximal expected payoff that player 1 can guarantee against all strategies of player 2. We consider the computation of the set of states with value 1 under finite-memory strategies for player 1, and our main results for the problem are as follows: (1) we present a polynomial-time algorithm; (2) we show that whenever there is a finite-memory strategy, there is a stationary strategy that does not need memory at all; and (3) we present an optimal bound (which is double exponential) on the patience of stationary strategies (where patience of a distribution is the inverse of the smallest positive probability and represents a complexity measure of a stationary strategy)

    Infinite-state games with finitary conditions

    Get PDF

    Unifying Two Views on Multiple Mean-Payoff Objectives in Markov Decision Processes

    Get PDF
    We consider Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) objectives. There exist two different views: (i) the expectation semantics, where the goal is to optimize the expected mean-payoff objective, and (ii) the satisfaction semantics, where the goal is to maximize the probability of runs such that the mean-payoff value stays above a given vector. We consider optimization with respect to both objectives at once, thus unifying the existing semantics. Precisely, the goal is to optimize the expectation while ensuring the satisfaction constraint. Our problem captures the notion of optimization with respect to strategies that are risk-averse (i.e., ensure certain probabilistic guarantee). Our main results are as follows: First, we present algorithms for the decision problems which are always polynomial in the size of the MDP. We also show that an approximation of the Pareto-curve can be computed in time polynomial in the size of the MDP, and the approximation factor, but exponential in the number of dimensions. Second, we present a complete characterization of the strategy complexity (in terms of memory bounds and randomization) required to solve our problem.Comment: Extended journal version of the LICS'15 pape

    Average Case Analysis of the Classical Algorithm for Markov Decision Processes with B\"uchi Objectives

    Full text link
    We consider Markov decision processes (MDPs) with ω\omega-regular specifications given as parity objectives. We consider the problem of computing the set of almost-sure winning vertices from where the objective can be ensured with probability 1. The algorithms for the computation of the almost-sure winning set for parity objectives iteratively use the solutions for the almost-sure winning set for B\"uchi objectives (a special case of parity objectives). We study for the first time the average case complexity of the classical algorithm for computing almost-sure winning vertices for MDPs with B\"uchi objectives. Our contributions are as follows: First, we show that for MDPs with constant out-degree the expected number of iterations is at most logarithmic and the average case running time is linear (as compared to the worst case linear number of iterations and quadratic time complexity). Second, we show that for general MDPs the expected number of iterations is constant and the average case running time is linear (again as compared to the worst case linear number of iterations and quadratic time complexity). Finally we also show that given all graphs are equally likely, the probability that the classical algorithm requires more than constant number of iterations is exponentially small

    Sensor Synthesis for POMDPs with Reachability Objectives

    Full text link
    Partially observable Markov decision processes (POMDPs) are widely used in probabilistic planning problems in which an agent interacts with an environment using noisy and imprecise sensors. We study a setting in which the sensors are only partially defined and the goal is to synthesize "weakest" additional sensors, such that in the resulting POMDP, there is a small-memory policy for the agent that almost-surely (with probability~1) satisfies a reachability objective. We show that the problem is NP-complete, and present a symbolic algorithm by encoding the problem into SAT instances. We illustrate trade-offs between the amount of memory of the policy and the number of additional sensors on a simple example. We have implemented our approach and consider three classical POMDP examples from the literature, and show that in all the examples the number of sensors can be significantly decreased (as compared to the existing solutions in the literature) without increasing the complexity of the policies.Comment: arXiv admin note: text overlap with arXiv:1511.0845
    corecore