607 research outputs found

    Elucidating the Structure of the Magnesium Aluminum Chloride Complex electrolyte for Magnesium-ion batteries

    Full text link
    We present a rigorous analysis of the Magnesium Aluminum Chloro Complex (MACC) in tetrahydrofuran (THF), one of the few electrolytes that can reversibly plate and strip Mg. We use \emph{ab initio} calculations and classical molecular dynamics simulations to interrogate the MACC electrolyte composition with the goal of addressing two urgent questions that have puzzled battery researchers: \emph{i}) the functional species of the electrolyte, and \emph{ii}) the complex equilibria regulating the MACC speciation after prolonged electrochemical cycling, a process termed as conditioning, and after prolonged inactivity, a process called aging. A general computational strategy to untangle the complex structure of electrolytes, ionic liquids and other liquid media is presented. The analysis of formation energies and grand-potential phase diagrams of Mg-Al-Cl-THF suggests that the MACC electrolyte bears a simple chemical structure with few simple constituents, namely the electro-active species MgCl+^+ and AlCl4_4^- in equilibrium with MgCl2_2 and AlCl3_3. Knowledge of the stable species of the MACC electrolyte allows us to determine the most important equilibria occurring during electrochemical cycling. We observe that Al deposition is always preferred to Mg deposition, explaining why freshly synthesized MACC cannot operate and needs to undergo preparatory conditioning. Similarly, we suggest that aluminum displacement and depletion from the solution upon electrolyte resting (along with continuous MgCl2_2 regeneration) represents one of the causes of electrolyte aging. Finally, we compute the NMR shifts from shielding tensors of selected molecules and ions providing fingerprints to guide future experimental investigations

    MAGP2 Controls Notch via Interactions with RGD Binding Integrins: Identification of a Novel ECM-Integrin-Notch Signaling Axis

    Get PDF
    Canonical Notch signaling involves Notch receptor activation via interaction with cell surface bound Notch ligand. Recent findings also indicate that Notch signaling may be modulated by cross-talk with other signaling mechanisms. The ECM protein MAGP2 was previously shown to regulate Notch in a cell type dependent manner, although the molecular details of this interaction have not been dissected. Here, we report that MAGP2 cell type specific control of Notch is independent of individual Notch receptor-ligand combinations but dependent on interaction with RGD binding integrins. Overexpressed MAGP2 was found to suppress transcriptional activity from the Notch responsive Hes1 promoter activity in endothelial cells, while overexpression of a RGD→RGE MAGP2 mutant increased Notch signaling in the same cell type. This effect was not unique to MAGP2 since the RGD domain of the ECM protein EGFL7 was also found to be an important modulator of Hes1 promoter activity. Independently of MAGP2 or EGFL7, inhibition of RGD-binding integrins with soluble RGD peptides also increased accumulation of active N1ICD fragments and Notch responsive promoter activity independently of changes in Notch1, Jag1, or Dll4 expression. Finally, β1 or β3 integrin blocking antibodies also enhanced Notch signaling. Collectively, these results answer the question of how MAGP2 controls cell type dependent Notch signaling, but more importantly uncover a new mechanism to understand how extracellular matrices and cellular environments impact Notch signaling

    Alumni Magazine Spring 2011

    Get PDF
    Framingham State University alumni magazine for Spring Semester 2011.http://digitalcommons.framingham.edu/mac_magazine/1009/thumbnail.jp

    Evolution in Slow Motion: Opting into a Digital World

    Get PDF
    Google\u27s Library Project which allows users to view snippets from books that have been scanned from library collections is the subject of two recently filed lawsuits. This article takes an in-depth look at the Library Project in light of modem copyright law. The Library Project presents courts with the difficult task of balancing consumers\u27 desire for information on demand and authors\u27 legal rights

    Digitally-Mediated Practices of Geospatial Archaeological Data: Transformation, Integration, & Interpretation

    Get PDF
    Digitally-mediated practices of archaeological data require reflexive thinking about where archaeology stands as a discipline in regard to the ‘digital,’ and where we want to go. To move toward this goal, we advocate a historical approach that emphasizes contextual source-side criticism and data intimacy—scrutinizing maps and 3D data as we do artifacts by analyzing position, form, material and context of analog and digital sources. Applying this approach, we reflect on what we have learned from processes of digitally-mediated data. We ask: What can we learn as we convert analog data to digital data? And, how does digital data transformation impact the chain of archaeological practice? Primary, or raw data, are produced using various technologies ranging from Global Navigation Satellite System (GNSS)/Global Positioning System (GPS), LiDAR, digital photography, and ground penetrating radar, to digitization, typically using a flat-bed scanner to transform analog data such as old field notes, photographs, or drawings into digital data. However, archaeologists not only collect primary data, we also make substantial time investments to create derived data such as maps, 3D models, or statistics via post-processing and analysis. While analog data is typically static, digital data is more dynamic, creating fundamental differences in digitally-mediated archaeological practice. To address some issues embedded in this process, we describe the lessons we have learned from translating analog to digital geospatial data—discussing what is lost and what is gained in translation, and then applying what we have learned to provide concrete insights to archaeological practice

    Three Interventions for Financial Therapy: Fostering an Examination of Financial Behaviors and Beliefs

    Get PDF
    Three interventions that address the emotional components of handling finances are proposed. Drawn from a stepwise model of financial therapy, the three interventions introduced here have the specific aim of incorporating the emotional attributes of traditional financial behaviors and beliefs. First, the Financial Genogram identifies family of origin issues that may affect financial behaviors; second, the Financial Landscape intervention is used when emotional stress occurs in collecting and examining financial documents; and third, the Financial Mirror broadens clients’ perspectives of their financial behaviors. Issues in future research and implementation of the Five Step model are addressed in treating financially distressed clients

    Dual-Balance Electrodynamic Trap as a Microanalytical Tool for Identifying Gel Transitions and Viscous Properties of Levitated Aerosol Particles

    Get PDF
    The formation of gelatinous networks within an aerosol particle significantly alters the physicochemical properties of the aerosol material. Existing techniques for studying gel transitions rely on bulk rheometry, which is limited by contact with the sample, or microrheological techniques such as holographic optical tweezers, which rely on expensive equipment and high-powered lasers that can degrade light-absorbing aerosol. Here, we present a new technique to probe the microrheological characteristics of aerosol particles and explore gel formation under atmospheric conditions in a contactless environment without the need for high-power light sources. In a dual-balance quadrupole electrodynamic balance, levitated droplets of opposite polarity are trapped and equilibrated at fixed relative humidity (RH) and then subsequently merged, and the physical characteristics of the merged droplets are monitored as a function of time and RH using imaging techniques. By comparing the RH-dependent characteristics of MgSO4 (known to undergo a gel transition) to glucose and sucrose (known to remain as viscous Newtonian fluids) under fixed equilibration time scales, we demonstrate that gel phase transitions can be identified in aerosol particles, with MgSO4 abruptly transitioning to a rigid microgel at 30% RH. Further, we demonstrate this technique can be used to also measure aerosol viscosity and identify non-Newtonian fluid dynamics in model sea spray aerosol composed of NaCl, CaCl2, and sorbitol. Thus, using this experimental technique, it is possible to distinguish between aerosol compositions that form viscous Newtonian fluids and those that undergo a gel transition or form non-Newtonian fluids. This technique offers a simple and cost-effective analytical tool for probing gel transitions outside of bulk solubility limits, with relevant applications ranging from atmospheric science to microengineering of soft matter materials

    Gospel-Centered Psychotherapy: What It Is and Why It Matters

    Get PDF
    The dialogue about gospel-centered psychotherapy in the Latter-day Saint mental health community began approximately 50 years ago. In this article we briefly summarize and discuss some of the significant events, issues, and accomplishments in this dialogue and effort. We offer definitions of gospel-centered psychotherapy and gospel-based psychotherapy. We concur with others that there is not one true gospel-centered psychotherapy, theory, or approach, but we suggest that gospel-centered psychotherapists have developed many different forms of gospel-centered treatment over the years. We argue that gospel-centered approaches to psychotherapy do share some common characteristics, including the therapist\u27s moral character and spiritual preparation, the spiritual doctrines and moral values that inform the concepts and methods of treatment, and a belief that it is God and Jesus Christ who ultimately do the healing. We conclude by offering recommendations for future training and education, research, and dialogue about gospel-centered psychotherapies
    corecore