18 research outputs found

    Molybdenum (Mo) increases endogenous phenolics, proline and photosynthetic pigments and the phytoremediation potential of the industrially important plant Ricinus communis L. for removal of cadmium from contaminated soil.

    Get PDF
    Cadmium (Cd) in agricultural soil negatively affects crops yield and compromises food safety. Remediation of polluted soil is necessary for the re-establishment of sustainable agriculture and to prevent hazards to human health and environmental pollution. Phytoremediation is a promising technology for decontamination of polluted soil. The present study investigated the effect of molybdenum (Mo) (0.5, 1.0 and 2.0 ppm) on endogenous production of total phenolics and free proline, plant biomass and photosynthetic pigments in Ricinus communis plants grown in Cd (25, 50 and 100 ppm) contaminated soils and the potential for Cd phytoextraction. Mo was applied via seed soaking, soil addition and foliar spray. Foliar sprays significantly increased plant biomass, Cd accumulation and bioconcentration. Phenolic concentrations showed significantly positive correlations with Cd accumulation in roots (R 2 = 0.793, 0.807 and 0.739) and leaves (R 2 = 0.707, 721 and 0.866). Similarly, proline was significantly positively correlated with Cd accumulation in roots (R 2 = 0.668, 0.694 and 0.673) and leaves (R 2 = 0.831, 0.964 and 0.930). Foliar application was found to be the most effective way to deliver Mo in terms of increase in plant growth, Cd accumulation and production of phenolics and proline

    Wolbachia Infection Decreased the Resistance of Drosophila to Lead

    Get PDF
    Background: The heavy metal lead has been shown to be associated with a genotoxic risk. Drosophila melanogaster is a model organism commonly utilized in genetic toxicology testing. The endosymbionts — Wolbachia are now very common in both wild populations and laboratory stocks of Drosophila. Wolbachia may induce resistance to pathogenic viruses, filarial nematodes and Plasmodium in fruit fly and mosquito hosts. However the effect of Wolbachia infection on the resistance of their hosts to heavy metal is unknown. Methodology/Principal Findings: Manipulating the lead content in the diet of Drosophila melanogaster, we found that lead consumption had no different effects on developmental time between Wolbachia-infected (Dmel wMel) and –uninfected (Dmel T) flies. While in Pb-contaminated medium, significantly reduced amount of pupae and adults of Dmel wMel were emerged, and Dmel wMel adults had significantly shorter longevity than that of Dmel T flies. Lead infusion in diet resulted in significantly decreased superoxide dismutase (SOD) activity in Dmel T flies (P,0.05), but not in Dmel wMel flies. Correspondingly, lead cultures induced a 10.8 fold increase in malonaldehyde (MDA) contents in Dmel T larvae (P,0.05). While in Dmel wMel larvae, it resulted in only a 1.3 fold increase. By quantitative RT-PCR, we showed that lead infused medium caused significantly increased expression level of relish and CecA2 genes in Dmel T flies (P,0.01). Lead cultures did not change dramatically the expression of these genes in Dmel wMel flies

    Biology of Francisella tularensis Subspecies holarctica Live Vaccine Strain in the Tick Vector Dermacentor variabilis

    Get PDF
    Background: The c-proteobacterium Francisella tularensis is the etiologic agent of seasonal tick-transmitted tularemia epizootics in rodents and rabbits and of incidental infections in humans. The biology of F. tularensis in its tick vectors has not been fully described, particularly with respect to its quanta and duration of colonization, tissue dissemination, and transovarial transmission. A systematic study of the colonization of Dermacentor variabilis by the F. tularensis subsp. holarctica live vaccine strain (LVS) was undertaken to better understand whether D. variabilis may serve as an inter-epizootic reservoir for F. tularensis. Methodology/Principal Findings: Colony-reared larva, nymph, and adult D. variabilis were artificially fed LVS via glass capillary tubes fitted over the tick mouthparts, and the level of colonization determined by microbial culture. Larvae and nymphs were initially colonized with 8.860.8610 1 and 1.160.03610 3 CFU/tick, respectively. Post-molting, a significant increase in colonization of both molted nymphs and adults occurred, and LVS persisted in 42 % of molted adult ticks at 126 days post-capillary tube feeding. In adult ticks, LVS initially colonized the gut, disseminated to hemolymph and salivary glands by 21 days, and persisted up to 165 days. LVS was detected in the salivary secretions of adult ticks after four days post intra-hemocoelic inoculation, and LVS recovered from salivary gland was infectious to mice with an infectious dose 50 % of 3 CFU. LVS in gravid female ticks colonized via the intra-hemocoelic route disseminated to the ovaries and then t

    CD200R deletion promotes a neutrophil niche for Francisella tularensis and increases infectious burden and mortality

    No full text
    The authors show that the CD200 receptor (CD200R) promotes effective clearance of pulmonary Francisella tularensis infection in knock out mice. This result is unexpected as CD200R is known to dampen pulmonary immune responses, and these data suggest that the beneficial effect against F. tularensis is due to depletion of a neutrophil niche for the bacterium

    Quantitative Proteomics Analysis of Macrophage-Derived Lipid Rafts Reveals Induction of Autophagy Pathway at the Early Time of Francisella tularensis LVS Infection

    No full text
    Francisella tularensis is a highly infectious intracellular pathogen that has evolved an efficient strategy to subvert host defense response to survive inside the host. The molecular mechanisms regulating these host-pathogen interactions and especially those that are initiated at the time of the bacterial entry via its attachment to the host plasma membrane likely predetermine the intracellular fate of pathogen. Here, we provide the evidence that infection of macrophages with F. tularensis leads to changes in protein composition of macrophage-derived lipid rafts, isolated as detergent-resistant membranes (DRMs). Using SILAC-based quantitative proteomic approach, we observed the accumulation of autophagic adaptor protein p62 at the early, stages of microbe-host cell interaction. We confirmed the colocalization of the p62 with ubiquitinated and LC3-decorated intracellular F. tularensis microbes with its maximum at 1 h postinfection. Furthermore, the infection of p62-knockdown host cells led to the transient increase in the intracellular number of microbes up to 4 h after in vitro infection. Together, these data suggest that the activation of the autophagy pathway in F. tularensis infected macrophages, which impacts the early phase of microbial proliferation, is subsequently circumvented by ongoing infection.</p

    FmvB: A Francisella tularensis Magnesium-Responsive Outer Membrane Protein that Plays a Role in Virulence

    No full text
    Francisella tularensis is the causative agent of the lethal disease tularemia. Despite decades of research, little is understood about why F. tularensis is so virulent. Bacterial outer membrane proteins (OMPs) are involved in various virulence processes, including protein secretion, host cell attachment, and intracellular survival. Many pathogenic bacteria require metals for intracellular survival and OMPs often play important roles in metal uptake. Previous studies identified three F. tularensis OMPs that play roles in iron acquisition. In this study, we examined two previously uncharacterized proteins, FTT0267 (named fmvA, for Francisella metal and virulence) and FTT0602c (fmvB), which are homologs of the previously studied F. tularensis iron acquisition genes and are predicted OMPs. To study the potential roles of FmvA and FmvB in metal acquisition and virulence, we first examined fmvA and fmvB expression following pulmonary infection of mice, finding that fmvB was upregulated up to 5-fold during F. tularensis infection of mice. Despite sequence homology to previously-characterized iron-acquisition genes, FmvA and FmvB do not appear to be involved iron uptake, as neither fmvA nor fmvB were upregulated in iron-limiting media and neither ΔfmvA nor ΔfmvB exhibited growth defects in iron limitation. However, when other metals were examined in this study, magnesium-limitation significantly induced fmvB expression, ΔfmvB was found to express significantly higher levels of lipopolysaccharide (LPS) in magnesium-limiting medium, and increased numbers of surface protrusions were observed on ΔfmvB in magnesium-limiting medium, compared to wild-type F. tularensis grown in magnesium-limiting medium. RNA sequencing analysis of ΔfmvB revealed the potential mechanism for increased LPS expression, as LPS synthesis genes kdtA and wbtA were significantly upregulated in ΔfmvB, compared with wild-type F. tularensis. To provide further evidence for the potential role of FmvB in magnesium uptake, we demonstrated that FmvB was outer membrane-localized. Finally, ΔfmvB was found to be attenuated in mice and cytokine analyses revealed that ΔfmvB-infected mice produced lower levels of pro-inflammatory cytokines, including GM-CSF, IL-3, and IL-10, compared with mice infected with wild-type F. tularensis. Taken together, although the function of FmvA remains unknown, FmvB appears to play a role in magnesium uptake and F. tularensis virulence. These results may provide new insights into the importance of magnesium for intracellular pathogens
    corecore