125 research outputs found
The iconography of Asphyxiophilia: From fantasmatic fetish to forensic fact
This is a post print version of the article. The official published version can be accessed from the link below
How experiential marketing develops brand identity in the fast food sector
[ES] innovadoras y completas. Por ende, se ha llevado a cabo un estudio con el propósito de analizar los componentes que definen una experiencia exitosa de marca en este ámbito y examinar los factores que influyen en creación de una identidad de marca. Se ha prestado especial atención a aspectos como la imagen del sector y los efectos de las acciones de marketing experiencial en la percepción de los clientes. Se han planteado una serie de objetivos para este trabajo, y para lograrlos, se ha realizado una revisión bibliográfica exhaustiva, que ha permitido comprender a fondo estos conceptos para su posterior aplicación a una investigación empírica. A través de la implementación de una encuesta, se identificado de qué forma el marketing experiencial define una identidad de marca de comida rápida. Como resultado, se ha llegado a la conclusión de que, para conseguir implementar una identidad de marca sólida y reconocida, las marcas deberían optar por utilizar técnicas de marketing experiencial que se adopten a los valores e imagen de marca que se desea transmitir. Así, los clientes desarrollan lealtad y aumentan su confianza hacia la marca, generan conexiones emocionales, y mejora su experiencia en el restaurante. En resumen, este estudio ha explorado como el marketing experiencial genera la identidad de marcas de comida rápida, en un contexto donde se busca crear experiencias innovadoras y completas más que simplemente ofrecer un producto o servicio. Estos hallazgos subrayan la importancia de diseñar experiencias positivas y memorables para los consumidores como una estrategia afectiva en la construcción de la identidad de marca en la industria de la comida rápida.[EN] The preferences and needs of consumers in the fast food industry are constantly changing, generating a growing interest in creating innovative and comprehensive experiences. Therefore, a study has been conducted with the purpose of analyzing the components that define a successful brand experience in this field and examining the factors that influence the creation of a brand identity. Special attention has been given to aspects such as the industry image and the effects of experiential marketing actions on consumer perception. A series of objectives have been set for this work, and to achieve them, an extensive literature review has been conducted, which has allowed for a deep understanding of these concepts for their subsequent application in empirical research. Through the implementation of a survey, it has been identified how experiential marketing shapes the brand identity of fast food. As a result, it has been concluded that in order to establish a strong and recognized brand identity, brands should consider using experiential marketing techniques that align with the desired brand values and image. This way, customers develop loyalty, increase trust towards the brand, establish emotional connections, and enhance their overall restaurant experience. In summary, this study has explored how experiential marketing generates the brand identity of fast food brands, in a context where the focus is on creating innovative and comprehensive experiences rather than solely offering a product or a service. These findings underscore the importance of designing positive and memorable experiences for consumers as an effective strategy in building brand identity in the fast food industry
Single-channel SCAM Identifies Pore-lining Residues in the First Extracellular Loop and First Transmembrane Domains of Cx46 Hemichannels
Gap junction (GJ) channels provide an important pathway for direct intercellular transmission of signaling molecules. Previously we showed that fixed negative charges in the first extracellular loop domain (E1) strongly influence charge selectivity, conductance, and rectification of channels and hemichannels formed of Cx46. Here, using excised patches containing Cx46 hemichannels, we applied the substituted cysteine accessibility method (SCAM) at the single channel level to residues in E1 to determine if they are pore-lining. We demonstrate residues D51, G46, and E43 at the amino end of E1 are accessible to modification in open hemichannels to positively and negatively charged methanethiosulfonate (MTS) reagents added to cytoplasmic or extracellular sides. Positional effects of modification along the length of the pore and opposing effects of oppositely charged modifying reagents on hemichannel conductance and rectification are consistent with placement in the channel pore and indicate a dominant electrostatic influence of the side chains of accessible residues on ion fluxes. Hemichannels modified by MTS-EA+, MTS-ET+, or MTS-ES− were refractory to further modification and effects of substitutions with positively charged residues that electrostatically mimicked those caused by modification with the positively charged MTS reagents were similar, indicating all six subunits were likely modified. The large reductions in conductance caused by MTS-ET+ were visible as stepwise reductions in single-channel current, indicative of reactions occurring at individual subunits. Extension of single-channel SCAM using MTS-ET+ into the first transmembrane domain, TM1, revealed continued accessibility at the extracellular end at A39 and L35. The topologically complementary region in TM3 showed no evidence of reactivity. Structural models show GJ channels in the extracellular gap to have continuous inner and outer walls of protein. If representative of open channels and hemichannels, these data indicate E1 as constituting a significant portion of this inner, pore-forming wall, and TM1 contributing as pore-lining in the extracellular portion of transmembrane span
Regulation of Connexin Hemichannels by Monovalent Cations
Opening of connexin hemichannels in the plasma membrane is highly regulated. Generally, depolarization and reduced extracellular Ca2+ promote hemichannel opening. Here we show that hemichannels formed of Cx50, a principal lens connexin, exhibit a novel form of regulation characterized by extraordinary sensitivity to extracellular monovalent cations. Replacement of extracellular Na+ with K+, while maintaining extracellular Ca2+ constant, resulted in >10-fold potentiation of Cx50 hemichannel currents, which reversed upon returning to Na+. External Cs+, Rb+, NH4+, but not Li+, choline, or TEA, exhibited a similar effect. The magnitude of potentiation of Cx50 hemichannel currents depended on the concentration of extracellular Ca2+, progressively decreasing as external Ca2+ was reduced. The primary effect of K+ appears to be a reduction in the ability of Ca2+, as well as other divalent cations, to close Cx50 hemichannels. Cx46 hemichannels exhibited a modest increase upon substituting Na+ with K+. Analyses of reciprocal chimeric hemichannels that swap NH2- and COOH-terminal halves of Cx46 and Cx50 demonstrate that the difference in regulation by monovalent ions in these connexins resides in the NH2-terminal half. Connexin hemichannels have been implicated in physiological roles, e.g., release of ATP and NAD+ and in pathological roles, e.g., cell death through loss or entry of ions and signaling molecules. Our results demonstrate a new, robust means of regulating hemichannels through a combination of extracellular monovalent and divalent cations, principally Na+, K+, and Ca2+
Mind the gap: connexins and cell–cell communication in the diabetic kidney
Connexins, assembled as a hexameric connexon, form a transmembrane hemichannel that provides a conduit for paracrine signalling of small molecules and ions to regulate the activity and function of adjacent cells. When hemichannels align and associate with similar channels on opposing cells, they form a continuous aqueous pore or gap junction, allowing the direct transmission of metabolic and electrical signals between coupled cells. Regulation of gap junction synthesis and channel activity is critical for cell function, and a number of diseases can be attributed to changes in the expression/function of these important proteins. Diabetic nephropathy is associated with several complex metabolic and inflammatory responses characterised by defects at the molecular, cellular and tissue level. In both type 1 and type 2 diabetes, glycaemic injury of the kidney is the leading cause of end-stage renal failure, a consequence of multiple aetiologies, including increased deposition of extracellular matrix, glomerular hyperfiltration, albuminuria and tubulointerstitial fibrosis. In diabetic nephropathy, loss of connexin mediated cell–cell communication within the nephron may represent an early sign of disease; however, our current knowledge of the role of connexins in the diabetic kidney is sparse. This review highlights recent evidence demonstrating that maintenance of connexin-mediated cell–cell communication could benefit region-specific renal function in diabetic nephropathy and suggests that these proteins should be viewed as a tantalising novel target for therapeutic intervention
Differentially altered Ca2+ regulation and Ca2+ permeability in Cx26 hemichannels formed by the A40V and G45E mutations that cause keratitis ichthyosis deafness syndrome
Mutations in GJB2, which encodes Cx26, are one of the most common causes of inherited deafness in humans. More than 100 mutations have been identified scattered throughout the Cx26 protein, most of which cause nonsyndromic sensorineural deafness. In a subset of mutations, deafness is accompanied by hyperkeratotic skin disorders, which are typically severe and sometimes fatal. Many of these syndromic deafness mutations localize to the amino-terminal and first extracellular loop (E1) domains. Here, we examined two such mutations, A40V and G45E, which are positioned near the TM1/E1 boundary and are associated with keratitis ichthyosis deafness (KID) syndrome. Both of these mutants have been reported to form hemichannels that open aberrantly, leading to “leaky” cell membranes. Here, we quantified the Ca2+ sensitivities and examined the biophysical properties of these mutants at macroscopic and single-channel levels. We find that A40V hemichannels show significantly impaired regulation by extracellular Ca2+, increasing the likelihood of aberrant hemichannel opening as previously suggested. However, G45E hemichannels show only modest impairment in regulation by Ca2+ and instead exhibit a substantial increase in permeability to Ca2+. Using cysteine substitution and examination of accessibility to thiol-modifying reagents, we demonstrate that G45, but not A40, is a pore-lining residue. Both mutants function as cell–cell channels. The data suggest that G45E and A40V are hemichannel gain-of-function mutants that produce similar phenotypes, but by different underlying mechanisms. A40V produces leaky hemichannels, whereas G45E provides a route for excessive entry of Ca2+. These aberrant properties, alone or in combination, can severely compromise cell integrity and lead to increased cell death
SCAM analysis of Panx1 suggests a peculiar pore structure
Vertebrates express two families of gap junction proteins: the well-characterized connexins and the pannexins. In contrast to connexins, pannexins do not appear to form gap junction channels but instead function as unpaired membrane channels. Pannexins have no sequence homology to connexins but are distantly related to the invertebrate gap junction proteins, innexins. Despite the sequence diversity, pannexins and connexins form channels with similar permeability properties and exhibit similar membrane topology, with two extracellular loops, four transmembrane (TM) segments, and cytoplasmic localization of amino and carboxy termini. To test whether the similarities extend to the pore structure of the channels, pannexin 1 (Panx1) was subjected to analysis with the substituted cysteine accessibility method (SCAM). The thiol reagents maleimidobutyryl-biocytin and 2-trimethylammonioethyl-methanethiosulfonate reacted with several cysteines positioned in the external portion of the first TM segment (TM1) and the first extracellular loop. These data suggest that portions of TM1 and the first extracellular loop line the outer part of the pore of Panx1 channels. In this aspect, the pore structures of Panx1 and connexin channels are similar. However, although the inner part of the pore is lined by amino-terminal amino acids in connexin channels, thiol modification was detected in carboxyterminal amino acids in Panx1 channels by SCAM analysis. Thus, it appears that the inner portion of the pores of Panx1 and connexin channels may be distinct
Mechanism of inhibition of connexin channels by the quinine derivative N-benzylquininium
The anti-malarial drug quinine and its quaternary derivative N-benzylquininium (BQ+) have been shown to inhibit gap junction (GJ) channels with specificity for Cx50 over its closely related homologue Cx46. Here, we examined the mechanism of BQ+ action using undocked Cx46 and Cx50 hemichannels, which are more amenable to analyses at the single-channel level. We found that BQ+ (300 µM–1 mM) robustly inhibited Cx50, but not Cx46, hemichannel currents, indicating that the Cx selectivity of BQ+ is preserved in both hemichannel and GJ channel configurations. BQ+ reduced Cx50 hemichannel open probability (Po) without appreciably altering unitary conductance of the fully open state and was effective when added from either extracellular or cytoplasmic sides. The reductions in Po were dependent on BQ+ concentration with a Hill coefficient of 1.8, suggesting binding of at least two BQ+ molecules. Inhibition by BQ+ was voltage dependent, promoted by hyperpolarization from the extracellular side and conversely by depolarization from the cytoplasmic side. These results are consistent with binding of BQ+ in the pore. Substitution of the N-terminal (NT) domain of Cx46 into Cx50 significantly impaired inhibition by BQ+. The NT domain contributes to the formation of the wide cytoplasmic vestibule of the pore and, thus, may contribute to the binding of BQ+. Single-channel analyses showed that BQ+ induced transitions that did not resemble pore block, but rather transitions indistinguishable from the intrinsic gating events ascribed to loop gating, one of two mechanisms that gate Cx channels. Moreover, BQ+ decreased mean open time and increased mean closed time, indicating that inhibition consists of an increase in hemichannel closing rate as well as a stabilization of the closed state. Collectively, these data suggest a mechanism of action for BQ+ that involves modulation loop gating rather than channel block as a result of binding in the NT domain
Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis.
In severe early-onset epilepsy, precise clinical and molecular genetic diagnosis is complex, as many metabolic and electro-physiological processes have been implicated in disease causation. The clinical phenotypes share many features such as complex seizure types and developmental delay. Molecular diagnosis has historically been confined to sequential testing of candidate genes known to be associated with specific sub-phenotypes, but the diagnostic yield of this approach can be low. We conducted whole-genome sequencing (WGS) on six patients with severe early-onset epilepsy who had previously been refractory to molecular diagnosis, and their parents. Four of these patients had a clinical diagnosis of Ohtahara Syndrome (OS) and two patients had severe non-syndromic early-onset epilepsy (NSEOE). In two OS cases, we found de novo non-synonymous mutations in the genes KCNQ2 and SCN2A. In a third OS case, WGS revealed paternal isodisomy for chromosome 9, leading to identification of the causal homozygous missense variant in KCNT1, which produced a substantial increase in potassium channel current. The fourth OS patient had a recessive mutation in PIGQ that led to exon skipping and defective glycophosphatidyl inositol biosynthesis. The two patients with NSEOE had likely pathogenic de novo mutations in CBL and CSNK1G1, respectively. Mutations in these genes were not found among 500 additional individuals with epilepsy. This work reveals two novel genes for OS, KCNT1 and PIGQ. It also uncovers unexpected genetic mechanisms and emphasizes the power of WGS as a clinical tool for making molecular diagnoses, particularly for highly heterogeneous disorders
- …
