634 research outputs found

    The unusual UV continuum of quasar Ton 34 and the possibility of crystalline dust absorption

    Full text link
    Luminous quasars are known to display a sharp steepening of the continuum near 1100A. This spectral feature is not well fitted by current accretion disk models, unless comptonization of the disk emission is invoked. Absorption by carbon crystalline dust has been proposed to account for this feature. Ton 34 (z=1.928) exhibits the steepest far-UV decline (F_nu prop nu^{-5.3}) among the 183 quasar HST-FOS spectra analyzed by Telfer et al. It is an ideal object to test the crystalline dust hypothesis as well as alternative interpretations of the UV break. We reconstruct the UV spectral energy distribution of Ton 34 by combining HST, IUE and Palomar spectra. The far-UV continuum shows a very deep continuum trough, which is bounded by a steep far-UV rise. We fit the trough assuming nanodiamond dust grains. Extinction by carbon crystalline dust reproduces the deep absorption trough of Ton 34 reasonably well, but not the observed steep rise in the extreme UV. We also study the possibility of an intrinsic continuum rollover. The dust might be part of a high velocity outflow (13000 km/s), which is observed in absorption in the lines of CIV, OVI, NV and Ly_alpha.Comment: 7 figures, to appear in A&

    The Two-Phase, Two-Velocity Ionized Absorber in the Seyfert 1 Galaxy NGC 5548

    Full text link
    We present an analysis of X-ray high quality grating spectra of the Seyfert 1 galaxy NGC 5548 using archival Chandra HETGS and LETGS observations for a total exposure time of 800ks. The continuum emission is well represented by a powerlaw plus a black-body component. We find that the well known X-ray warm absorber in this source consists of two different outflow velocity systems. Recognizing the presence of these kinematically distinct components allows each system to be fitted independently, each with two absorption components with different ionization levels. The high velocity system consists of a component with temperature of 2.7X10^6K and another component with temperature of 5.8X10^5K. The low-velocity system required also two absorbing components, one with temperature of 5.8X10^5K; the other with lower temperature (3.5X10^4K). Once these components are considered, the data do not require any further absorbers. In particular, a model consisting of a continuous radial range of ionization structures is not required. The two absorbing components in each velocity system are in pressure equilibrium with each other. This suggests that each velocity system consists of a multi-phase medium. This is the first time that different outflow velocity systems have been modelled independently in the X-ray band for this source. The kinematic components and column densities found from the X-rays are in agreement with the main kinematic components found in the UV absorber. This supports the idea that the UV and X-ray absorbing gas is part of the same phenomenon. NGC 5548 can now be seen to fit in a pattern established for other warm absorbers: 2 or 3 discrete phases in pressure equilibrium. There are no remaining cases of a well studied warm absorber in which a model consisting of a multi-phase medium is not viable.Comment: To appear on The Astrophysical Journal March 1, 201

    An X-ray WHIM metal absorber from a Mpc-scale empty region of space

    Full text link
    We report a detection of an absorption line at ~44.8 {\AA} in a > 500 ks Chandra HRC-S/LETG X-ray grating spectrum of the blazar H 2356-309. This line can be identified as intervening CV-K{\alpha} absorption, at z\approx0.112, produced by a warm (log T = 5.1 K) intergalactic absorber. The feature is significant at a 2.9{\sigma} level (accounting for the number of independent redshift trials). We estimate an equivalent hydrogen column density of log N_H=19.05 (Z/Zsun)^-1 cm^-2. Unlike other previously reported FUV/X-ray metal detections of warm-hot intergalactic medium (WHIM), this CV absorber lies in a region with locally low galaxy density, at ~2.2 Mpc from the closest galaxy at that redshift, and therefore is unlikely to be associated with an extended galactic halo. We instead tentatively identify this absorber with an intervening Warm-Hot Intergalactic Medium filament possibly permeating a large-scale, 30 Mpc extended, structure of galaxies whose redshift centroid, within a cylinder of 7.5 Mpc radius centered on the line of sight to H 2356-309, is marginally consistent (at a 1.8{\sigma} level) with the redshift of the absorber.Comment: ApJ accepted, 6 pages, 3 figure
    corecore