539 research outputs found
New classes of modified teleparallel gravity models
New classes of modified teleparallel theories of gravity are introduced. The
action of this theory is constructed to be a function of the irreducible parts
of torsion , where and are squares of the axial, tensor and vector components
of torsion, respectively. This is the most general (well-motivated) second
order teleparallel theory of gravity that can be constructed from the torsion
tensor. Different particular second order theories can be recovered from this
theory such as new general relativity, conformal teleparallel gravity or
gravity. Additionally, the boundary term which connects the Ricci scalar
with the torsion scalar via can also be incorporated into the action.
By performing a conformal transformation, it is shown that the two unique
theories which have an Einstein frame are either the teleparallel equivalent of
general relativity or gravity, as expected.Comment: v2: 10 pages, accepted for publication in PLB; for a detailed
derivation of the field equations see Appendix A in v
Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach
Teleparallel gravity and its popular generalization gravity can be
formulated as fully invariant (under both coordinate transformations and local
Lorentz transformations) theories of gravity. Several misconceptions about
teleparallel gravity and its generalizations can be found in the literature,
especially regarding their local Lorentz invariance. We describe how these
misunderstandings may have arisen and attempt to clarify the situation. In
particular, the central point of confusion in the literature appears to be
related to the inertial spin connection in teleparallel gravity models. While
inertial spin connections are commonplace in special relativity, and not
something inherent to teleparallel gravity, the role of the inertial spin
connection in removing the spurious inertial effects within a given frame of
reference is emphasized here. The careful consideration of the inertial spin
connection leads to the construction of a fully invariant theory of
teleparallel gravity and its generalizations. Indeed, it is the nature of the
spin connection that differentiates the relationship between what have been
called good tetrads and bad tetrads and clearly shows that, in principle, any
tetrad can be utilized. The field equations for the fully invariant formulation
of teleparallel gravity and its generalizations are presented and a number of
examples using different assumptions on the frame and spin connection are
displayed to illustrate the covariant procedure. Various modified teleparallel
gravity models are also briefly reviewed.Comment: v2: 72 pages, revised version, references added, matches published
versio
Noninvasive in vivo magnetic resonance measures of glutathione synthesis in human and rat liver as an oxidative stress biomarker.
UNLABELLED: Oxidative stress (OS) plays a central role in the progression of liver disease and in damage to liver by toxic xenobiotics. We have developed methods for noninvasive assessment of hepatic OS defenses by measuring flux through the glutathione (GSH) synthesis pathway. (13) C-labeled GSH is endogenously produced and detected by in vivo magnetic resonance after administration of [2-(13) C]-glycine. We report on a successful first-ever human demonstration of this approach as well as preclinical studies demonstrating perturbed GSH metabolism in models of acute and chronic OS. Human studies employed oral administration of [2-(13) C]-glycine and (13) C spectroscopy on a 3T clinical magnetic resonance (MR) imaging scanner and demonstrated detection and quantification of endogenously produced (13) C-GSH after labeled glycine ingestion. Plasma analysis demonstrated that glycine (13) C fractional enrichment achieved steady state during the 6-hour ingestion period. Mean rate of synthesis of hepatic (13) C-labeled GSH was 0.32 ± 0.18 mmole/kg/hour. Preclinical models of acute OS and nonalcoholic steatohepatitis (NASH) comprised CCl4 -treated and high-fat, high-carbohydrate diet-fed Sprague-Dawley rats, respectively, using intravenous administration of [2-(13) C]-glycine and observation of (13) C-label metabolism on a 7T preclinical MR system. Preclinical studies demonstrated a 54% elevation of GSH content and a 31% increase in flux through the GSH synthesis pathway at 12 hours after acute insult caused by CCl4 administration, as well as a 23% decrease in GSH content and evidence of early steatohepatitis in the model of NASH. CONCLUSION: Our data demonstrate in vivo (13) C-labeling and detection of GSH as a biomarker of tissue OS defenses, detecting chronic and acute OS insults. The methods are applicable to clinical research studies of hepatic OS in disease states over time as well as monitoring effects of therapeutic interventions
The effects of insulin resistance on individual tissues: an application of a mathematical model of metabolism in humans
Whilst the human body expends energy constantly, the human diet consists of a mix of carbohydrates and fats delivered in a discontinuous manner. To deal with this sporadic supply of energy, there are transport, storage and utilisation mechanisms, for both carbohydrates and fats, around all tissues of the body. Insulin-resistant states such as type 2 diabetes and obesity are characterised by reduced efficiency of these mechanisms. Exactly how these insulin-resistant states develop, for example whether there is an order in which tissues become insulin resistant, is an active area of research with the hope of gaining a better overall understanding of insulin resistance.
In this paper we use a previously derived system of 12 first-or der coupled differential equations that describe the transport between, and storage in, different tissues of the human body. We briefly revisit the derivation of the model before parametrising the model to account for insulin resistance. We then solve the model numerically, separately simulating each individual tissue as insulin resistant, and discuss and compare these results, drawing three main conclusions. The implications of these results are in accordance with biological intuition. First, insulin resistance in a tissue creates a knock-on effect on the other tissues in the body, whereby they attempt to compensate for the reduced efficiency of the insulin resistant tissue. Secondly, insulin resistance causes a fatty liver; and the insulin resistance of tissues other than the liver can cause fat to accumulate in the liver. Finally, although insulin resistance in individual tissues can cause slightly reduced skeletal-muscle metabolic flexibility, it is when the whole body is insulin resistant that the biggest effect on skeletal muscle flexibility is see
Intramuscular Lipid Metabolism, Insulin Action and Obesity
With the increasing prevalence of obesity, research has focused on the molecular mechanism(s) linking obesity and skeletal muscle insulin resistance. Metabolic alterations within muscle, such as changes in the cellular location of fatty acid transporter proteins, decreased mitochondrial enzyme activity and defects in mitochondrial morphology, likely contribute to obesity and insulin resistance. These defects are thought to play a role in the reduced skeletal muscle fatty acid oxidation (FAO) and increased intramuscular lipid (IMCL) accumulation that is apparent with obesity and other insulin resistant states, such as type 2 diabetes. Intramuscular triacylglycerol (IMTG) does not appear to be a ubiquitous marker of insulin resistance, although specific IMCL intermediates such as long-chain fatty acyl-CoAs (LCFA-CoAs), ceramide and diacylglycerol (DAG) may inhibit insulin signal transduction. In this review, we will briefly summarize the defects in skeletal muscle lipid metabolism associated with obesity, and discuss proposed mechanisms by which these defects may contribute to insulin resistance. Originally published IUBMB Life, Vol. 6, No. 1, Jan 200
Pre- and early-postnatal nutrition modify gene and protein expressions of muscle energy metabolism markers and phospholipid fatty acid composition in a muscle type specific manner in sheep.
We previously reported that undernutrition in late fetal life reduced whole-body insulin sensitivity in adult sheep, irrespective of dietary exposure in early postnatal life. Skeletal muscle may play an important role in control of insulin action. We therefore studied a range of putative key muscle determinants of insulin signalling in two types of skeletal muscles (longissimus dorsi (LD) and biceps femoris (BF)) and in the cardiac muscle (ventriculus sinister cordis (VSC)) of sheep from the same experiment. Twin-bearing ewes were fed either 100% (NORM) or 50% (LOW) of their energy and protein requirements during the last trimester of gestation. From day-3 postpartum to 6-months of age (around puberty), twin offspring received a high-carbohydrate-high-fat (HCHF) or a moderate-conventional (CONV) diet, whereafter all males were slaughtered. Females were subsequently raised on a moderate diet and slaughtered at 2-years of age (young adults). The only long-term consequences of fetal undernutrition observed in adult offspring were lower expressions of the insulin responsive glucose transporter 4 (GLUT4) protein and peroxisome proliferator-activated receptor gamma, coactivator 1α (PGC1α) mRNA in BF, but increased PGC1α expression in VSC. Interestingly, the HCHF diet in early postnatal life was associated with somewhat paradoxically increased expressions in LD of a range of genes (but not proteins) related to glucose uptake, insulin signalling and fatty acid oxidation. Except for fatty acid oxidation genes, these changes persisted into adulthood. No persistent expression changes were observed in BF and VSC. The HCHF diet increased phospholipid ratios of n-6/n-3 polyunsaturated fatty acids in all muscles, even in adults fed identical diets for 1½ years. In conclusion, early postnatal, but not late gestation, nutrition had long-term consequences for a number of determinants of insulin action and metabolism in LD. Tissues other than muscle may account for reduced whole body insulin sensitivity in adult LOW sheep
Body and Liver Fat Mass Rather Than Muscle Mitochondrial Function Determine Glucose Metabolism in Women With a History of Gestational Diabetes Mellitus
- …
