6,512 research outputs found

    Scaling properties of step bunches induced by sublimation and related mechanisms: A unified perspective

    Full text link
    This work provides a ground for a quantitative interpretation of experiments on step bunching during sublimation of crystals with a pronounced Ehrlich-Schwoebel (ES) barrier in the regime of weak desorption. A strong step bunching instability takes place when the kinetic length is larger than the average distance between the steps on the vicinal surface. In the opposite limit the instability is weak and step bunching can occur only when the magnitude of step-step repulsion is small. The central result are power law relations of the between the width, the height, and the minimum interstep distance of a bunch. These relations are obtained from a continuum evolution equation for the surface profile, which is derived from the discrete step dynamical equations for. The analysis of the continuum equation reveals the existence of two types of stationary bunch profiles with different scaling properties. Through a mathematical equivalence on the level of the discrete step equations as well as on the continuum level, our results carry over to the problems of step bunching induced by growth with a strong inverse ES effect, and by electromigration in the attachment/detachment limited regime. Thus our work provides support for the existence of universality classes of step bunching instabilities [A. Pimpinelli et al., Phys. Rev. Lett. 88, 206103 (2002)], but some aspects of the universality scenario need to be revised.Comment: 21 pages, 8 figure

    Equilibrium of anchored interfaces with quenched disordered growth

    Get PDF
    The roughening behavior of a one-dimensional interface fluctuating under quenched disorder growth is examined while keeping an anchored boundary. The latter introduces detailed balance conditions which allows for a thorough analysis of equilibrium aspects at both macroscopic and microscopic scales. It is found that the interface roughens linearly with the substrate size only in the vicinity of special disorder realizations. Otherwise, it remains stiff and tilted.Comment: 6 pages, 3 postscript figure

    Short-time scaling behavior of growing interfaces

    Full text link
    The short-time evolution of a growing interface is studied within the framework of the dynamic renormalization group approach for the Kadar-Parisi-Zhang (KPZ) equation and for an idealized continuum model of molecular beam epitaxy (MBE). The scaling behavior of response and correlation functions is reminiscent of the ``initial slip'' behavior found in purely dissipative critical relaxation (model A) and critical relaxation with conserved order parameter (model B), respectively. Unlike model A the initial slip exponent for the KPZ equation can be expressed by the dynamical exponent z. In 1+1 dimensions, for which z is known exactly, the analytical theory for the KPZ equation is confirmed by a Monte-Carlo simulation of a simple ballistic deposition model. In 2+1 dimensions z is estimated from the short-time evolution of the correlation function.Comment: 27 pages LaTeX with epsf style, 4 figures in eps format, submitted to Phys. Rev.

    Drift causes anomalous exponents in growth processes

    Full text link
    The effect of a drift term in the presence of fixed boundaries is studied for the one-dimensional Edwards-Wilkinson equation, to reveal a general mechanism that causes a change of exponents for a very broad class of growth processes. This mechanism represents a relevant perturbation and therefore is important for the interpretation of experimental and numerical results. In effect, the mechanism leads to the roughness exponent assuming the same value as the growth exponent. In the case of the Edwards-Wilkinson equation this implies exponents deviating from those expected by dimensional analysis.Comment: 4 pages, 1 figure, REVTeX; accepted for publication in PRL; added note and reference

    Adaptation dynamics of the quasispecies model

    Full text link
    We study the adaptation dynamics of an initially maladapted population evolving via the elementary processes of mutation and selection. The evolution occurs on rugged fitness landscapes which are defined on the multi-dimensional genotypic space and have many local peaks separated by low fitness valleys. We mainly focus on the Eigen's model that describes the deterministic dynamics of an infinite number of self-replicating molecules. In the stationary state, for small mutation rates such a population forms a {\it quasispecies} which consists of the fittest genotype and its closely related mutants. The quasispecies dynamics on rugged fitness landscape follow a punctuated (or step-like) pattern in which a population jumps from a low fitness peak to a higher one, stays there for a considerable time before shifting the peak again and eventually reaches the global maximum of the fitness landscape. We calculate exactly several properties of this dynamical process within a simplified version of the quasispecies model.Comment: Proceedings of Statphys conference at IIT Guwahati, to be published in Praman

    Lonely adatoms in space

    Full text link
    There is a close relation between the problems of second layer nucleation in epitaxial crystal growth and chemical surface reactions, such as hydrogen recombination, on interstellar dust grains. In both cases standard rate equation analysis has been found to fail because the process takes place in a confined geometry. Using scaling arguments developed in the context of second layer nucleation, I present a simple derivation of the hydrogen recombination rate for small and large grains. I clarify the reasons for the failure of rate equations for small grains, and point out a logarithmic correction to the reaction rate when the reaction is limited by the desorption of hydrogen atoms (the second order reaction regime)

    Dynamic Scaling in a 2+1 Dimensional Limited Mobility Model of Epitaxial Growth

    Full text link
    We study statistical scale invariance and dynamic scaling in a simple solid-on-solid 2+1 - dimensional limited mobility discrete model of nonequilibrium surface growth, which we believe should describe the low temperature kinetic roughening properties of molecular beam epitaxy. The model exhibits long-lived ``transient'' anomalous and multiaffine dynamic scaling properties similar to that found in the corresponding 1+1 - dimensional problem. Using large-scale simulations we obtain the relevant scaling exponents, and compare with continuum theories.Comment: 5 pages, 4 ps figures included, RevTe

    Variational Formulation for the KPZ and Related Kinetic Equations

    Full text link
    We present a variational formulation for the Kardar-Parisi-Zhang (KPZ) equation that leads to a thermodynamic-like potential for the KPZ as well as for other related kinetic equations. For the KPZ case, with the knowledge of such a potential we prove some global shift invariance properties previously conjectured by other authors. We also show a few results about the form of the stationary probability distribution function for arbitrary dimensions. The procedure used for KPZ was extended in order to derive more general forms of such a functional leading to other nonlinear kinetic equations, as well as cases with density dependent surface tension.Comment: RevTex, 8pgs, double colum

    Interfaces with a single growth inhomogeneity and anchored boundaries

    Get PDF
    The dynamics of a one dimensional growth model involving attachment and detachment of particles is studied in the presence of a localized growth inhomogeneity along with anchored boundary conditions. At large times, the latter enforce an equilibrium stationary regime which allows for an exact calculation of roughening exponents. The stochastic evolution is related to a spin Hamiltonian whose spectrum gap embodies the dynamic scaling exponent of late stages. For vanishing gaps the interface can exhibit a slow morphological transition followed by a change of scaling regimes which are studied numerically. Instead, a faceting dynamics arises for gapful situations.Comment: REVTeX, 11 pages, 9 Postscript figure

    Kinetic roughening of surfaces: Derivation, solution and application of linear growth equations

    Full text link
    We present a comprehensive analysis of a linear growth model, which combines the characteristic features of the Edwards--Wilkinson and noisy Mullins equations. This model can be derived from microscopics and it describes the relaxation and growth of surfaces under conditions where the nonlinearities can be neglected. We calculate in detail the surface width and various correlation functions characterizing the model. In particular, we study the crossover scaling of these functions between the two limits described by the combined equation. Also, we study the effect of colored and conserved noise on the growth exponents, and the effect of different initial conditions. The contribution of a rough substrate to the surface width is shown to decay universally as wi(0)(ξs/ξ(t))d/2w_i(0) (\xi_s/\xi(t))^{d/2}, where ξ(t)t1/z\xi(t) \sim t^{1/z} is the time--dependent correlation length associated with the growth process, wi(0)w_i(0) is the initial roughness and ξs\xi_s the correlation length of the substrate roughness, and dd is the surface dimensionality. As a second application, we compute the large distance asymptotics of the height correlation function and show that it differs qualitatively from the functional forms commonly used in the intepretation of scattering experiments.Comment: 28 pages with 4 PostScript figures, uses titlepage.sty; to appear in Phys. Rev.
    corecore