514 research outputs found

    Identification of the orphan gene Prod 1 in basal and other salamander families.

    Get PDF
    The urodele amphibians (salamanders) are the only adult tetrapods able to regenerate the limb. It is unclear if this is an ancestral property that is retained in salamanders but lost in other tetrapods or if it evolved in salamanders. The three-finger protein Prod 1 is implicated in the mechanism of newt limb regeneration, and no orthologs have been found in other vertebrates, thus providing evidence for the second viewpoint. It has also been suggested that this protein could play a role in salamander-specific aspects of limb development. There are ten families of extant salamanders, and Prod 1 has only been identified in two of them to date. It is important to determine if it is present in other families and, particularly, the basal group of two families which diverged approximately 200 MYA

    Online Innovation Intermediaries In Healthcare

    Get PDF
    In today’s knowledge rich environment even the largest organisations, such as pharmaceutical or medical technology companies, realize a bottleneck of knowledge resources for innovation. Harnessing the innovation potential of patients and other healthcare consumers contends to be part of the solution. This paper questions if online health platforms can support innovative activities by creating and transferring relevant knowledge from engaged healthcare consumers towards innovating healthcare companies. It aims at identifying online health platforms that can serve as innovation intermediaries. An exploratory, case-study-based approach is chosen. Through desk review a sample of online health platforms is created and case vignettes are developed. Content analysis returns descriptive attributes which are examined throughout the sample. 30 out of 306 health-related online platforms qualify as innovation intermediary. We observe that online innovation intermediaries look for profound experience from healthcare consumers, in particular patients with a higher degree of affectedness. Further qualitative findings are presented. This paper puts emphasis on the mediating role of selected online health platforms as advocates of innovation. It suggests a classification and description of the variety of “health 2.0” platforms and sketches a preliminary picture of the market for online innovation intermediaries in healthcare toda

    Resources and Geography of the Mediterranean Basin

    Get PDF
    I have attempted to focus attention upon the two resources which the Middle East possesses which are most relevant to the international power struggle: petroleum and location

    Modelling of Turbulent Premixed Stratified Combustion with Multiple Mapping Conditioning Mixing Mode

    Get PDF
    A hybrid Euler/Lagrange approach is used to model stratified lean premixed combustion in a turbulent flow. Large eddy simulations (LES) are coupled with an artificially thickened flame (ATF) approach for the computation of the reaction progress variable. This approach is combined with a sparse Lagrangian particle method for the modelling of the inner flame structure. A multiple mapping conditioning (MMC) mixing model is applied to prevent direct mixing across the flame front. Predicted flame structures are compared with measurements of a stratified premixed laboratory flame yielding good agreement and demonstrating the model’s capability to predict relatively thin flames and to approximate a flamelet-like inner flame structure

    Economic Potential for War

    Get PDF
    As in any other form of hu­man activity in which the means of attaining ends are limited, there is an economizing process which is implied, and war Is no exception

    Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes

    Get PDF
    BACKGROUND: Listeria monocytogenes is a food-borne pathogen that causes infections with a high-mortality rate and has served as an invaluable model for intracellular parasitism. Here, we report complete genome sequences for two L. monocytogenes strains belonging to serotype 4a (L99) and 4b (CLIP80459), and transcriptomes of representative strains from lineages I, II, and III, thereby permitting in-depth comparison of genome- and transcriptome -based data from three lineages of L. monocytogenes. Lineage III, represented by the 4a L99 genome is known to contain strains less virulent for humans. RESULTS: The genome analysis of the weakly pathogenic L99 serotype 4a provides extensive evidence of virulence gene decay, including loss of several important surface proteins. The 4b CLIP80459 genome, unlike the previously sequenced 4b F2365 genome harbours an intact inlB invasion gene. These lineage I strains are characterized by the lack of prophage genes, as they share only a single prophage locus with other L. monocytogenes genomes 1/2a EGD-e and 4a L99. Comparative transcriptome analysis during intracellular growth uncovered adaptive expression level differences in lineages I, II and III of Listeria, notable amongst which was a strong intracellular induction of flagellar genes in strain 4a L99 compared to the other lineages. Furthermore, extensive differences between strains are manifest at levels of metabolic flux control and phosphorylated sugar uptake. Intriguingly, prophage gene expression was found to be a hallmark of intracellular gene expression. Deletion mutants in the single shared prophage locus of lineage II strain EGD-e 1/2a, the lma operon, revealed severe attenuation of virulence in a murine infection model. CONCLUSION: Comparative genomics and transcriptome analysis of L. monocytogenes strains from three lineages implicate prophage genes in intracellular adaptation and indicate that gene loss and decay may have led to the emergence of attenuated lineages

    Heat Resistance Mediated by pLM58 Plasmid-Borne ClpL in Listeria monocytogenes

    Get PDF
    Listeria monocytogenes is one of the most heat-resistant non-sporeforming food-borne pathogens and poses a notable risk to food safety, particularly when mild heat treatments are used in food processing and preparation. While general heat stress properties and response mechanisms of L. monocytogenes have been described, accessory mechanisms providing particular L. monocytogenes strains with the advantage of enhanced heat resistance are unknown. Here, we report plasmidmediated heat resistance of L. monocytogenes for the first time. This resistance is mediated by the ATP-dependent protease ClpL. We tested the survival of two wildtype L. monocytogenes strains-both of serotype 1/2c, sequence type ST9, and high sequence identity-at high temperatures and compared their genome composition in order to identify genetic mechanisms involved in their heat survival phenotype. L. monocytogenes AT3E was more heat resistant (0.0 CFU/ml log(10) reduction) than strain AL4E (1.4 CFU/ml log(10) reduction) after heating at 55 degrees C for 40 min. A prominent difference in the genome compositions of the two strains was a 58-kb plasmid (pLM58) harbored by the heat-resistant AT3E strain, suggesting plasmid-mediated heat resistance. Indeed, plasmid curing resulted in significantly decreased heat resistance (1.1 CFU/ml log(10) reduction) at 55 degrees C. pLM58 harbored a 2,115-bp open reading frame annotated as an ATP-dependent protease (ClpL)-encoding clpL gene. Introducing the clpL gene into a natively heat-sensitive L. monocytogenes strain (1.2 CFU/ml log(10) reduction) significantly increased the heat resistance of the recipient strain (0.4 CFU/ml log(10) reduction) at 55 degrees C. Plasmid-borne ClpL is thus a potential predictor of elevated heat resistance in L. monocytogenes. IMPORTANCE Listeria monocytogenes is a dangerous food pathogen causing the severe illness listeriosis that has a high mortality rate in immunocompromised individuals. Although destroyed by pasteurization, L. monocytogenes is among the most heat-resistant non-spore-forming bacteria. This poses a risk to food safety, as listeriosis is commonly associated with ready-to-eat foods that are consumed without thorough heating. However, L. monocytogenes strains differ in their ability to survive high temperatures, and comprehensive understanding of the genetic mechanisms underlying these differences is still limited. Whole-genome-sequence analysis and phenotypic characterization allowed us to identify a novel plasmid, designated pLM58, and a plasmid-borne ATP-dependent protease (ClpL), which mediated heat resistance in L. monocytogenes. As the first report on plasmid-mediated heat resistance in L. monocytogenes, our study sheds light on the accessory genetic mechanisms rendering certain L. monocytogenes strains particularly capable of surviving high temperatures-with plasmid-borne ClpL being a potential predictor of elevated heat resistance.Peer reviewe

    Comparison of widely used Listeria monocytogenes strains EGD, 10403S, and EGD-e highlights genomic differences underlying variations in pathogenicity

    Full text link
    For nearly 3 decades, listeriologists and immunologists have used mainly three strains of the same serovar (1/2a) to analyze the virulence of the bacterial pathogen Listeria monocytogenes. The genomes of two of these strains, EGD-e and 10403S, were released in 2001 and 2008, respectively. Here we report the genome sequence of the third reference strain, EGD, and extensive genomic and phenotypic comparisons of the three strains. Strikingly, EGD-e is genetically highly distinct from EGD (29,016 single nucleotide polymorphisms [SNPs]) and 10403S (30,296 SNPs), and is more related to serovar 1/2c than 1/2a strains. We also found that while EGD and 10403S strains are genetically very close (317 SNPs), EGD has a point mutation in the transcriptional regulator PrfA (PrfA*), leading to constitutive expression of several major virulence genes. We generated an EGD-e PrfA* mutant and showed that EGD behaves like this strain in vitro, with slower growth in broth and higher invasiveness in human cells than those of EGD-e and 10403S. In contrast, bacterial counts in blood, liver, and spleen during infection in mice revealed that EGD and 10403S are less virulent than EGD-e, which is itself less virulent than EGD-e PrfA*. Thus, constitutive expression of PrfA-regulated virulence genes does not appear to provide a significant advantage to the EGD strain during infection in vivo, highlighting the fact that in vitro invasion assays are not sufficient for evaluating the pathogenic potential of L. monocytogenes strains. Together, our results pave the way for deciphering unexplained differences or discrepancies in experiments using different L. monocytogenes strainsOver the past 3 decades, Listeria has become a model organism for host-pathogen interactions, leading to critical discoveries in a broad range of fields, including bacterial gene regulation, cell biology, and bacterial pathophysiology. Scientists studying Listeria use primarily three pathogenic strains: EGD, EGD-e, and 10403S. Despite many studies on EGD, it is the only one of the three strains whose genome has not been sequenced. Here we report the sequence of its genome and a series of important genomic and phenotypic differences between the three strains, in particular, a critical mutation in EGD’s PrfA, the main regulator of Listeria virulence. Our results show that the three strains display differences which may play an important role in the virulence differences observed between the strains. Our findings will be of critical relevance to listeriologists and immunologists who have used or may use Listeria as a tool to study the pathophysiology of listeriosis and immune responsesThis work received financial support from the European Research Council (advanced grant 233348), the French Agence Nationale de la Recherche (grants BACNET 10-BINF-02-01, IBEID ANR-10-LABX-62-01, and ERA-NET ANR-2010-PATH), the Institut Pasteur, the Institut National de la Santé et de la Recherche Médicale, and the Institut National de la Recherche Agronomique. A.K. is a recipient of a scholarship from the Pasteur-Paris University International Doctoral Program/Institut Carnot Maladies Infectieuse
    corecore