1,391 research outputs found

    Reductions in global biodiversity loss predicted from conservation spending

    Get PDF
    Halting global biodiversity loss is central to both the Convention on Biological Diversity (CBD) and United Nations Sustainable Development Goals (SDGs)1,2, but success to date has been very limited3–5. A critical determinant of overall strategic success (or failure) is the financing committed to biodiversity6–9; however, financing decisions are still hindered by considerable uncertainty over what any investment is likely to achieve6–9.. For greater effectiveness, we need an evidence-based model (EBM)10–12 showing how conservation spending quantitatively reduces the rate of loss. Here, we empirically quantify how i$14.4 billion of conservation investment reduced biodiversity loss across 109 signatory countries between 1996 and 2008, by an average 29% per country. We also show that biodiversity change in signatory countries can be predicted with high accuracy, using a dual model that combines the positive impact of conservation investment with the negative impact of economic, agricultural and population growth (i.e. human development pressures)13–18. Decision-makers can use this dual model to forecast the improvement that any proposed biodiversity budget would achieve under various scenarios of human development pressure, comparing those forecasts to any chosen policy target (including the CBD and SDGs). Importantly, we further find that spending impacts shrink as human development pressures grow, implying that funding may need to increase over time. The model therefore offers a flexible tool for balancing the SDGs of human development and biodiversity, by predicting the dynamic changes needed in conservation finance as human development proceeds

    Considering Intra-individual Genetic Heterogeneity to Understand Biodiversity

    Get PDF
    In this chapter, I am concerned with the concept of Intra-individual Genetic Hetereogeneity (IGH) and its potential influence on biodiversity estimates. Definitions of biological individuality are often indirectly dependent on genetic sampling -and vice versa. Genetic sampling typically focuses on a particular locus or set of loci, found in the the mitochondrial, chloroplast or nuclear genome. If ecological function or evolutionary individuality can be defined on the level of multiple divergent genomes, as I shall argue is the case in IGH, our current genetic sampling strategies and analytic approaches may miss out on relevant biodiversity. Now that more and more examples of IGH are available, it is becoming possible to investigate the positive and negative effects of IGH on the functioning and evolution of multicellular individuals more systematically. I consider some examples and argue that studying diversity through the lens of IGH facilitates thinking not in terms of units, but in terms of interactions between biological entities. This, in turn, enables a fresh take on the ecological and evolutionary significance of biological diversity

    Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours

    Get PDF
    Although compulsive sexual behaviour (CSB) has been conceptualized as a "behavioural" addiction and common or overlapping neural circuits may govern the processing of natural and drug rewards, little is known regarding the responses to sexually explicit materials in individuals with and without CSB. Here, the processing of cues of varying sexual content was assessed in individuals with and without CSB, focusing on neural regions identified in prior studies of drug-cue reactivity. 19 CSB subjects and 19 healthy volunteers were assessed using functional MRI comparing sexually explicit videos with non-sexual exciting videos. Ratings of sexual desire and liking were obtained. Relative to healthy volunteers, CSB subjects had greater desire but similar liking scores in response to the sexually explicit videos. Exposure to sexually explicit cues in CSB compared to non-CSB subjects was associated with activation of the dorsal anterior cingulate, ventral striatum and amygdala. Functional connectivity of the dorsal anterior cingulate-ventral striatum-amygdala network was associated with subjective sexual desire (but not liking) to a greater degree in CSB relative to non-CSB subjects. The dissociation between desire or wanting and liking is consistent with theories of incentive motivation underlying CSB as in drug addictions. Neural differences in the processing of sexual-cue reactivity were identified in CSB subjects in regions previously implicated in drug-cue reactivity studies. The greater engagement of corticostriatal limbic circuitry in CSB following exposure to sexual cues suggests neural mechanisms underlying CSB and potential biological targets for interventions

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    A novel PKC activating molecule promotes neuroblast differentiation and delivery of newborn neurons in brain injuries

    Get PDF
    Neural stem cells are activated within neurogenic niches in response to brain injuries. This results in the production of neuroblasts, which unsuccessfully attempt to migrate toward the damaged tissue. Injuries constitute a gliogenic/non-neurogenic niche generated by the presence of anti-neurogenic signals, which impair neuronal differentiation and migration. Kinases of the protein kinase C (PKC) family mediate the release of growth factors that participate in different steps of the neurogenic process, particularly, novel PKC isozymes facilitate the release of the neurogenic growth factor neuregulin. We have demonstrated herein that a plant derived diterpene, (EOF2; CAS number 2230806-06-9), with the capacity to activate PKC facilitates the release of neuregulin 1, and promotes neuroblasts differentiation and survival in cultures of subventricular zone (SVZ) isolated cells in a novel PKC dependent manner. Local infusion of this compound in mechanical cortical injuries induces neuroblast enrichment within the perilesional area, and noninvasive intranasal administration of EOF2 promotes migration of neuroblasts from the SVZ towards the injury, allowing their survival and differentiation into mature neurons, being some of them cholinergic and GABAergic. Our results elucidate the mechanism of EOF2 promoting neurogenesis in injuries and highlight the role of novel PKC isozymes as targets in brain injury regeneration

    Use of horseradish peroxidase for gene-directed enzyme prodrug therapy with paracetamol

    Get PDF
    Gene therapy is a potential method of treating cancer with a greater degree of targeting than conventional therapies. In addition, therapy can be directed towards cells within the tumour population that are traditionally resistant to current treatment schedules. Horseradish peroxidase (HRP) can oxidise paracetamol to N-acetyl-p-benzoquinoneimine via a one-electron pathway. Incubation of human cells expressing HRP with 0.5–10 mm paracetamol reduced clonogenic survival, but had little effect on control cells. A small increase in apoptosis was seen and a decrease in the number of cells undergoing mitosis, consistent with reports in hepatocytes using higher paracetamol concentrations. The cytotoxicity was also seen under conditions of severe hypoxia (catalyst induced anoxia), indicating that the HRP/paracetamol combination may be suitable for hypoxia-targeted gene therapy

    Massive Spin-2 States as the Origin of the Top Quark Forward-Backward Asymmetry

    Full text link
    We show that the anomalously large top quark forward-backward asymmetry observed by CDF and D\O\, can naturally be accommodated in models with flavor-violating couplings of a new massive spin-2 state to quarks. Regardless of its origin, the lowest-order couplings of a spin-2 boson to fermions are analogous to the coupling of the graviton to energy/momentum, leading to strong sensitivity of the effects associated with its virtual exchange to the energy scales at hand. Precisely due to this fact, the observed dependence of the asymmetry on the ttˉt\bar t invariant mass fits nicely into the proposed framework. In particular, we find a vast parameter space which can lead to the central value for the observed forward-backward asymmetry in the high mass bin, while being in accord with all of the existing experimental constraints.Comment: added discussion of differential observables at the LHC, matches version accepted for publication in JHE

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    corecore