1,411 research outputs found

    NLRP2 controls age-associated maternal fertility

    Get PDF
    Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are well-known for their key roles in the immune system. Ectopically expressed NLRP2 in immortalized cell lines assembles an inflammasome and inhibits activation of the proinflammatory transcription factor NF-kappa B, but the physiological roles of NLRP2 are unknown. Here, we show that Nlrp2-deficient mice were born with expected Mendelian ratios and that Nlrp2 was dispensable for innate and adaptive immunity. The observation that Nlrp2 was exclusively expressed in oocytes led us to explore the role of Nlrp2 in parthenogenetic activation of oocytes. Remarkably, unlike oocytes of young adult Nlrp2-deficient mice, activated oocytes of mature adult mice developed slower and largely failed to reach the blastocyst stage. In agreement, we noted strikingly declining reproductive rates in vivo with progressing age of female Nlrp2-deficient mice. This work identifies Nlrp2 as a critical regulator of oocyte quality and suggests that NLRP2 variants with reduced activity may contribute to maternal age-associated fertility loss in humans

    Monoamine oxidase A expression is vital for embryonic brain development by modulating developmental apoptosis

    Get PDF
    Monoamine oxidases (MAO-A, MAO-B) metabolize biogenic amines and have been implicated in neuronal apoptosis. Although apoptosis is an important process in embryo development, the role of MAO isoenzymes has not been investigated in detail. We found that expression of MAO-A and MAO-B can be detected early on during embryo development. Expression levels remained constant until around midgestation but then dropped to almost undetectable levels toward birth. Similar expression kinetics were observed in the brain. Isoform-specific expression silencing of MAO-A mediated by siRNA during in vitro embryogenesis induced developmental defects, as indicated by a reduction of the crown rump length and impaired cerebral development. These alterations were paralleled by elevated serotonin levels. Similar abnormalities were observed when embryos were cultured in the presence of the MAO-A inhibitor clorgyline or when the transcriptional inhibitor of MAO-A expression Rl was overexpressed. In contrast, no such alterations were detected when expression of MAO-B was knocked down. To explore the underlying mechanisms for the developmental abnormalities in MAO-A knockdown embryos, we quantified the degree of developmental apoptosis in the developing brain. MAO-A knockdown reduced the number of apoptotic cells in the neuroepithelium, which coincided with impaired activation of caspases 3 and 9. Moreover, we observed reduced cyclin Dl levels as an indicator of impaired cell proliferation in MAO-A knockdown embryos. This data highlights MAO-A as a vital regulator of embryonic brain development

    Cyclin D1 promotes neurogenesis in the developing spinal cord in a cell cycle-independent manner

    Get PDF
    Neural stem and progenitor cells undergo an important transition from proliferation to differentiation in the G1 phase of the cell cycle. The mechanisms coordinating this transition are incompletely understood. Cyclin D proteins promote proliferation in G1 and typically are down-regulated before differentiation. Here we show that motoneuron progenitors in the embryonic spinal cord persistently express Cyclin D1 during the initial phase of differentiation, while down-regulating Cyclin D2. Loss-of-function and gain-offunction experiments indicate that Cyclin D1 (but not D2) promotes neurogenesis in vivo, a role that can be dissociated from its cell cycle function. Moreover, reexpression of Cyclin D1 can restore neurogenic capacity to D2-expressing glial-restricted progenitors. The neurogenic function of Cyclin D1 appears to be mediated, directly or indirectly, by Hes6, a proneurogenic basic helic-loop-helix transcription factor. These data identify a cell cycle-independent function for Cyclin D1 in promoting neuronal differentiation, along with a potential genetic pathway through which this function is exerted

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Zinc deficiency and neurodevelopment: the case of neurons

    Get PDF
    Zinc is essential for normal brain development. Gestational severe zinc deficiency can lead to overt fetal brain malformations. Although not teratogenic, suboptimal zinc nutrition during gestation can have long-term effects on the offspring's nervous system. This article will review current knowledge on the role of zinc in modulating neurogenesis and neuronal apoptosis as well as the proposed underlying mechanisms. A decrease in neuronal zinc causes cell cycle arrest, which in part involves a deregulation of select signals (ERK1/2, p53, and NF-κB). Zinc deficiency also induces apoptotic neuronal death through the intrinsic (mitochondrial) pathway, which can be triggered by the activation of the zinc-regulated enzyme caspase-3, and as a consequence of abnormal regulation of prosurvival signals (ERK1/2 and NF-κB). Alterations in the finely tuned processes of neurogenesis, neuronal migration, differentiation, and apoptosis, which involve the developmental shaping of the nervous system, could have a long-term impact on brain health. Zinc deficiency during gestation, even at the marginal levels observed in human populations, could increase the risk for behavioral/neurological disorders in infancy, adolescence, and adulthood.Fil: Adamo, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Oteiza, Patricia Isabel. University of California at Davis; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Nuclear translocation of cytochrome c during apoptosis

    Get PDF
    Release of cytochrome c from mitochondria is a major event during apoptosis. Released cytochrome c has been shown to activate caspase-dependent apoptotic signals. In this report, we provide evidence for a novel role of cytochrome c in caspase-independent nuclear apoptosis. We showed that cytochrome c, released from mitochondria upon apoptosis induction, gradually accumulates in the nucleus as evidenced by both immunofluorescence and subcellular fractionation. Parallel to nuclear accumulation of cytochrome c, acetylated histone H2A, but not unmodified H2A, was released from the nucleus to the cytoplasm. Addition of purified cytochrome c to isolated nuclei recapitulated the preferential release of acetylated, but not deacetylated, histone H2A. Cytochrome c was also found to induce chromatin condensation. These results suggest that the nuclear accumulation of cytochrome c may be directly involved in the remodeling of chromatin. Our results provide evidence of a novel role for cytochrome c in inducing nuclear apoptosis

    Inhibitors of Protein Kinase Signaling Pathways Emerging Therapies for Cardiovascular Disease

    Get PDF
    Protein kinases are enzymes that covalently modify proteins by attaching phosphate groups (from ATP) to serine, threonine, and/or tyrosine residues. In so doing, the functional properties of the protein kinase’s substrates are modified. Protein kinases transduce signals from the cell membrane into the interior of the cell. Such signals include not only those arising from ligand-receptor interactions but also environmental perturbations such as when the membrane undergoes mechanical deformation (ie, cell stretch or shear stress). Ultimately, the activation of signaling pathways that use protein kinases often culminates in the reprogramming of gene expression through the direct regulation of transcription factors or through the regulation of mRNA stability or protein translation. Protein kinases regulate most aspects of normal cellular function. The pathophysiological dysfunction of protein kinase signaling pathways underlies the molecular basis of many cancers and of several manifestations of cardiovascular disease, such as hypertrophy and other types of left ventricular remodeling, ischemia/reperfusion injury, angiogenesis, and atherogenesis. Given their roles in such a wide variety of disease states, protein kinases are rapidly becoming extremely attractive targets for drug discovery, probably second only to heterotrimeric G protein-coupled receptors (eg, angiotensin II). Here, we will review the reasons for this explosion in interest in inhibitors of protein kinases and will describe the process of identifying novel drugs directed against kinases. We will specifically focus on disease states for which drug development has proceeded to the point of clinical or advanced preclinical studies

    Low Oxygen Enhances Primitive and Definitive Neural Stem Cell Colony Formation by Inhibiting Distinct Cell Death Pathways

    Get PDF
    Neural stem cells (NSCs) can be derived from single mouse embryonic stem cells (ESCs) in the absence of instructive factors. Clonal primitive NSC (pNSC) colonies are formed first, and then give rise to clonal, fibroblast growth factor-dependent definitive neural stem cells (dNSCs). We tested low-oxygen culture as a potential method of alleviating the extensive cell death seen in pNSCs and dNSCs. Culture in low (4%) oxygen promoted survival of pNSCs by inhibiting apoptosis-inducing factor (AIF)-dependent cell death, although pNSCs undergo both AIF- and caspase-mediated cell death in 20% oxygen. In contrast, survival of dNSCs in low oxygen was increased by inhibition of caspase-dependent cell death. In normoxia, AIF is implicated in promoting dNSC survival. Neither survival effect was dependent on the main transcriptional effector of hypoxia, hypoxia-inducible factor 1. Low-oxygen concentrations may be involved in expansion of early NSC populations by inhibiting cell death through different pathways in these sequential pNSC and dNSC populations. Stem Cells 2009;27:1879–188

    Lettuce mosaic virus isolated from pea (Pisum sativum)

    Get PDF

    Emerging concepts about NAIP/NLIRC4 inflammasomes

    Get PDF
    Neuronal apoptosis inhibitory protein (NAIP)/NOD-like receptor (NLR) containing a caspase activating and recruitment domain (CARD) 4 (NLRC4) inflammasome complexes are activated in response to proteins from virulent bacteria that reach the cell cytosol. Specific NAIP proteins bind to the agonists and then physically associate with NLRC4 to form an inflammasome complex able to recruit and activate pro-caspase-1. NAIP5 and NAIP6 sense flagellin, component of flagella from motile bacteria, whereas NAIP1 and NAIP2 detect needle and rod components from bacterial type III secretion systems, respectively. Active caspase-1 mediates the maturation and secretion of the pro-inflammatory cytokines, 11,113 and 11,18, and is responsible for the induction of pyroptosis, a pro-inflammatory form of cell death. in addition to these well-known effector mechanisms, novel roles have been described for NAIP/NLRC4 inflammasomes, such as phagosomal maturation, activation of inducible nitric oxide synthase, regulation of autophagy, secretion of inflammatory mediators, antibody production, activation of T cells, among others. These effector mechanisms mediated by NAIP/NLRC4 inflammasomes have been extensively studied in the context of resistance of infections and the potential of their agonists has been exploited in therapeutic strategies to non-infectious pathologies, such as tumor protection. Thus, this review will discuss current knowledge about the activation of NAIP/NLRC4 inflammasomes and their effector mechanisms.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)INCTVUniversidade Federal de São Paulo, Ctr Terapia Celulare & Mol CTC Mol, BR-04044010 São Paulo, SP, BrazilUniversidade Federal de São Paulo, Dept Ciencias Biol, BR-04044010 São Paulo, SP, BrazilUniversidade Federal de São Paulo, Ctr Terapia Celulare & Mol CTC Mol, BR-04044010 São Paulo, SP, BrazilUniversidade Federal de São Paulo, Dept Ciencias Biol, BR-04044010 São Paulo, SP, BrazilFAPESP: 2013/16010-5Web of Scienc
    corecore