7,662 research outputs found
Recommended from our members
Pan-active imidazolopiperazine antimalarials target the Plasmodium falciparum intracellular secretory pathway.
A promising new compound class for treating human malaria is the imidazolopiperazines (IZP) class. IZP compounds KAF156 (Ganaplacide) and GNF179 are effective against Plasmodium symptomatic asexual blood-stage infections, and are able to prevent transmission and block infection in animal models. But despite the identification of resistance mechanisms in P. falciparum, the mode of action of IZPs remains unknown. To investigate, we here combine in vitro evolution and genome analysis in Saccharomyces cerevisiae with molecular, metabolomic, and chemogenomic methods in P. falciparum. Our findings reveal that IZP-resistant S. cerevisiae clones carry mutations in genes involved in Endoplasmic Reticulum (ER)-based lipid homeostasis and autophagy. In Plasmodium, IZPs inhibit protein trafficking, block the establishment of new permeation pathways, and cause ER expansion. Our data highlight a mechanism for blocking parasite development that is distinct from those of standard compounds used to treat malaria, and demonstrate the potential of IZPs for studying ER-dependent protein processing
Single Step Solution Processed GaAs Thin Films from GaMe 3 and BuAsH 2 under Ambient Pressure
This article reports on the possibility of low-cost GaAs formed under ambient pressure via a single step solution processed route from only readily available precursors, tBuAsH2 and GaMe3. The thin films of GaAs on glass substrates were found to have good crystallinity with crystallites as large as 150 nm and low contamination with experimental results matching well with theoretical density of states calculations. These results open up a route to efficient and cost-effective scale up of GaAs thin films with high material properties for widespread industrial use. Confirmation of film quality was determined using XRD, Raman, EDX mapping, SEM, HRTEM, XPS, and SIMS
Dynamical R-parity Breaking at the LHC
In a class of extensions of the minimal supersymmetric standard model with
(B-L)/left-right symmetry that explains the neutrino masses, breaking R-parity
symmetry is an essential and dynamical requirement for successful gauge
symmetry breaking. Two consequences of these models are: (i) a new kind of
R-parity breaking interaction that protects proton stability but adds new
contributions to neutrinoless double beta decay and (ii) an upper bound on the
extra gauge and parity symmetry breaking scale which is within the large hadron
collider (LHC) energy range. We point out that an important prediction of such
theories is a potentially large mixing between the right-handed charged lepton
() and the superpartner of the right-handed gauge boson (), which leads to a brand new class of R-parity violating interactions of
type and \widetilde{d^c}^\dagger\u^c
e^c. We analyze the relevant constraints on the sparticle mass spectrum and
the LHC signatures for the case with smuon/stau NLSP and gravitino LSP. We note
the "smoking gun" signals for such models to be lepton flavor/number violating
processes: (or ) and
(or ) without
significant missing energy. The predicted multi-lepton final states and the
flavor structure make the model be distinguishable even in the early running of
the LHC.Comment: 30 pages, 13 figures, 6 tables, reference adde
Speech identification and cortical potentials in individuals with auditory neuropathy
<p>Abstract</p> <p>Background</p> <p>Present study investigated the relationship between speech identification scores in quiet and parameters of cortical potentials (latency of P1, N1, and P2; and amplitude of N1/P2) in individuals with auditory neuropathy.</p> <p>Methods</p> <p>Ten individuals with auditory neuropathy (five males and five females) and ten individuals with normal hearing in the age range of 12 to 39 yr participated in the study. Speech identification ability was assessed for bi-syllabic words and cortical potentials were recorded for click stimuli.</p> <p>Results</p> <p>Results revealed that in individuals with auditory neuropathy, speech identification scores were significantly poorer than that of individuals with normal hearing. Individuals with auditory neuropathy were further classified into two groups, Good Performers and Poor Performers based on their speech identification scores. It was observed that the mean amplitude of N1/P2 of Poor Performers was significantly lower than that of Good Performers and those with normal hearing. There was no significant effect of group on the latency of the peaks. Speech identification scores showed a good correlation with the amplitude of cortical potentials (N1/P2 complex) but did not show a significant correlation with the latency of cortical potentials.</p> <p>Conclusion</p> <p>Results of the present study suggests that measuring the cortical potentials may offer a means for predicting perceptual skills in individuals with auditory neuropathy.</p
The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription
The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth
Recommended from our members
Elastic and anelastic relaxation behaviour of perovskite multiferroics II: PbZrTiO (PZT)–PbFeTaO (PFT)
Elastic and anelastic properties of ceramic samples of multiferroic perovskites with nominal compositions across the binary join PbZrTiO–PbFeTaO (PZT–PFT) have been assembled to create a binary phase diagram and to address the role of strain relaxation associated with their phase transitions. Structural relationships are similar to those observed previously for PbZrTiO–PbFeNbO (PZT–PFN), but the magnitude of the tetragonal shear strain associated with the ferroelectric order parameter appears to be much smaller. This leads to relaxor character for the development of ferroelectric properties in the end member PbFeTaO. As for PZT–PFN, there appear to be two discrete instabilities rather than simply a reorientation of the electric dipole in the transition sequence cubic–tetragonal–monoclinic, and the second transition has characteristics typical of an improper ferroelastic. At intermediate compositions, the ferroelastic microstructure has strain heterogeneities on a mesoscopic length scale and, probably, also on a microscopic scale. This results in a wide anelastic freezing interval for strain-related defects rather than the freezing of discrete twin walls that would occur in a conventional ferroelastic material. In PFT, however, the acoustic loss behaviour more nearly resembles that due to freezing of conventional ferroelastic twin walls. Precursor softening of the shear modulus in both PFT and PFN does not fit with a Vogel–Fulcher description, but in PFT there is a temperature interval where the softening conforms to a power law suggestive of the role of fluctuations of the order parameter with dispersion along one branch of the Brillouin zone. Magnetic ordering appears to be coupled only weakly with a volume strain and not with shear strain but, as with multiferroic PZT–PFN perovskites, takes place within crystals which have significant strain heterogeneities on different length scales.RUS facilities in Cambridge were established with funding from the Natural Environment Research Council (Grants NE/B505738/1, NE/F017081/1). The present work was supported by Grant No. EP/ I036079/1 from the Engineering and Physical Sciences Research Council. We thank Dr. Sam Crossley for his assistance with dielectric analysis and the use of his software to run those measurements. JAS gratefully acknowledges the hospitality of the Max Planck Institute for Chemical Physics of Solids. The Nanopaleomagnetism lab has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007– 2013)/ERC Grant Agreement 320750. SED and HS acknowledge support from the Winton Programme for the physics of sustainability. HS also acknowledges support from the Funai Foundation for Information Technology and the British Council Japan Association. Part of the work was carried out at the University of Puerto Rico, supported by the DOEEBSCoR project DEG02-ER46526
Candidate-gene based GWAS identifies reproducible DNA markers for metabolic pyrethroid resistance from standing genetic variation in East African Anopheles gambiae.
Metabolic resistance to pyrethroid insecticides is widespread in Anopheles mosquitoes and is a major threat to malaria control. DNA markers would aid predictive monitoring of resistance, but few mutations have been discovered outside of insecticide-targeted genes. Isofemale family pools from a wild Ugandan Anopheles gambiae population, from an area where operational pyrethroid failure is suspected, were genotyped using a candidate-gene enriched SNP array. Resistance-associated SNPs were detected in three genes from detoxification superfamilies, in addition to the insecticide target site (the Voltage Gated Sodium Channel gene, Vgsc). The putative associations were confirmed for two of the marker SNPs, in the P450 Cyp4j5 and the esterase Coeae1d by reproducible association with pyrethroid resistance in multiple field collections from Uganda and Kenya, and together with the Vgsc-1014S (kdr) mutation these SNPs explained around 20% of variation in resistance. Moreover, the >20 Mb 2La inversion also showed evidence of association with resistance as did environmental humidity. Sequencing of Cyp4j5 and Coeae1d detected no resistance-linked loss of diversity, suggesting selection from standing variation. Our study provides novel, regionally-validated DNA assays for resistance to the most important insecticide class, and establishes both 2La karyotype variation and humidity as common factors impacting the resistance phenotype
Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque
Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events
Alcohol and HIV Disease Progression: Weighing the Evidence
Heavy alcohol use is commonplace among HIV-infected individuals; however, the extent that alcohol use adversely impacts HIV disease progression has not been fully elucidated. Fairly strong evidence suggests that heavy alcohol consumption results in behavioral and biological processes that likely increase HIV disease progression, and experimental evidence of the biological effect of heavy alcohol on simian immunodeficiency virus in macaques is quite suggestive. However, several observational studies of the effect of heavy alcohol consumption on HIV progression conducted in the 1990s found no association of heavy alcohol consumption with time to AIDS diagnosis, while some more recent studies showed associations of heavy alcohol consumption with declines of CD4 cell counts and nonsuppression of HIV viral load. We discuss several plausible biological and behavioral mechanisms by which alcohol may cause HIV disease progression, evidence from prospective observational human studies, and suggest future research to further illuminate this important issue
- …
