2,084 research outputs found

    Density of states of the binary alloy in the coherent potential approximation

    Get PDF
    The density of states of an electron in a binary alloy in the tight binding model is calculated in the single site coherent potential approximation (CPA) as a function of the concentration and the site energy difference. The fluctuations in the site energies due to the random environment is taken into account approximately by giving width to the site energy probability distribution function, which is normally a sum of two delta functions with proper weight factor. © 1975 the Indian Academy of Sciences

    Edge Currents in Non-commutative Chern-Simons Theory from a New Matrix Model

    Get PDF
    This paper discusses the formulation of the non-commutative Chern-Simons (CS) theory where the spatial slice, an infinite strip, is a manifold with boundaries. As standard star products are not correct for such manifolds, the standard non-commutative CS theory is not also appropriate here. Instead we formulate a new finite-dimensional matrix CS model as an approximation to the CS theory on the strip. A work which has points of contact with ours is due to Lizzi, Vitale and Zampini where the authors obtain a description for the fuzzy disc. The gauge fields in our approach are operators supported on a subspace of finite dimension N+\eta of the Hilbert space of eigenstates of a simple harmonic oscillator with N, \eta \in Z^+ and N \neq 0. This oscillator is associated with the underlying Moyal plane. The resultant matrix CS theory has a fuzzy edge. It becomes the required sharp edge when N and \eta goes to infinity in a suitable sense. The non-commutative CS theory on the strip is defined by this limiting procedure. After performing the canonical constraint analysis of the matrix theory, we find that there are edge observables in the theory generating a Lie algebra with properties similar to that of a non-abelian Kac-Moody algebra. Our study shows that there are (\eta+1)^2 abelian charges (observables) given by the matrix elements (\cal A_i)_{N-1 N-1} and (\cal A_i)_{nm} (where n or m \geq N) of the gauge fields, that obey certain standard canonical commutation relations. In addition, the theory contains three unique non-abelian charges, localized near the N^th level. We show that all non-abelian edge observables except these three can be constructed from the abelian charges above. Using the results of this analysis we discuss the large N and \eta limit.Comment: LaTeX, 16 pages and 2 figures. Comments added in sections 4 and 5. A minor error corrected in section 4. Figures replaced for clarity. Typos correcte

    Interactions between brown-dwarf binaries and Sun-like stars

    Full text link
    Several mechanisms have been proposed for the formation of brown dwarfs, but there is as yet no consensus as to which -- if any -- are operative in nature. Any theory of brown dwarf formation must explain the observed statistics of brown dwarfs. These statistics are limited by selection effects, but they are becoming increasingly discriminating. In particular, it appears (a) that brown dwarfs that are secondaries to Sun-like stars tend to be on wide orbits, a\ga 100\,{\rm AU} (the Brown Dwarf Desert), and (b) that these brown dwarfs have a significantly higher chance of being in a close (a\la 10\,{\rm AU}) binary system with another brown dwarf than do brown dwarfs in the field. This then raises the issue of whether these brown dwarfs have formed {\it in situ}, i.e. by fragmentation of a circumstellar disc; or have formed elsewhere and subsequently been captured. We present numerical simulations of the purely gravitational interaction between a close brown-dwarf binary and a Sun-like star. These simulations demonstrate that such interactions have a negligible chance (<0.001<0.001) of leading to the close brown-dwarf binary being captured by the Sun-like star. Making the interactions dissipative by invoking the hydrodynamic effects of attendant discs might alter this conclusion. However, in order to explain the above statistics, this dissipation would have to favour the capture of brown-dwarf binaries over single brown-dwarfs, and we present arguments why this is unlikely. The simplest inference is that most brown-dwarf binaries -- and therefore possibly also most single brown dwarfs -- form by fragmentation of circumstellar discs around Sun-like protostars, with some of them subsequently being ejected into the field.Comment: 10 pages, 8 figures, Accepted for publication in Astrophysics and Space Scienc

    Impurity and interface bound states in dx2y2+idxyd_{x^2-y^2}+id_{xy} and px+ipyp_x+ip_y superconductors

    Get PDF
    Motivated by recent discoveries of novel superconductors such as Nax_xCoO2y_2\cdot yH2_2O and Sr2_2RuO4_4, we analysize features of quasi-particle scattering due to impurities and interfaces for possible gapful dx2y2+idxyd_{x^2-y^2}+id_{xy} and px+ipyp_x+ip_y Cooper pairing. A bound state appears near a local impurity, and a band of bound states form near an interface. We obtained analytically the bound state energy, and calculated the space and energy dependent local density of states resolvable by high-resolution scanning tunnelling microscopy. For comparison we also sketch results of impurity and surface states if the pairing is nodal p- or d-wave.Comment: 4 pages, 4 figure

    Geometric effects on T-breaking in p+ip and d+id superconductors

    Full text link
    Superconducting order parameters that change phase around the Fermi surface modify Josephson tunneling behavior, as in the phase-sensitive measurements that confirmed dd order in the cuprates. This paper studies Josephson coupling when the individual grains break time-reversal symmetry; the specific cases considered are p±ipp \pm ip and d±idd \pm id, which may appear in Sr2_2RuO4_4 and Nax_xCoO2_2 \cdot (H2_2O)y_y respectively. TT-breaking order parameters lead to frustrating phases when not all grains have the same sign of time-reversal symmetry breaking, and the effects of these frustrating phases depend sensitively on geometry for 2D arrays of coupled grains. These systems can show perfect superconducting order with or without macroscopic TT-breaking. The honeycomb lattice of superconducting grains has a superconducting phase with no spontaneous breaking of TT but instead power-law correlations. The superconducting transition in this case is driven by binding of fractional vortices, and the zero-temperature criticality realizes a generalization of Baxter's three-color model.Comment: 8 page

    Analysis of the doubly heavy baryons in the nuclear matter with the QCD sum rules

    Full text link
    In this article, we study the doubly heavy baryon states Ξcc\Xi_{cc}, Ωcc\Omega_{cc}, Ξbb\Xi_{bb} and Ωbb\Omega_{bb} in the nuclear matter using the QCD sum rules, and derive three coupled QCD sum rules for the masses, vector self-energies and pole residues. The predictions for the mass-shifts in the nuclear matter ΔMΞcc=1.11GeV\Delta M_{\Xi_{cc}}=-1.11\,\rm{GeV}, ΔMΩcc=0.33GeV\Delta M_{\Omega_{cc}}=-0.33\,\rm{GeV}, ΔMΞbb=3.37GeV\Delta M_{\Xi_{bb}}=-3.37\,\rm{GeV} and ΔMΩbb=1.05GeV\Delta M_{\Omega_{bb}}=-1.05\,\rm{GeV} can be confronted with the experimental data in the future.Comment: 10 pages, 4 figure

    BINGO: A code for the efficient computation of the scalar bi-spectrum

    Full text link
    We present a new and accurate Fortran code, the BI-spectra and Non-Gaussianity Operator (BINGO), for the efficient numerical computation of the scalar bi-spectrum and the non-Gaussianity parameter f_{NL} in single field inflationary models involving the canonical scalar field. The code can calculate all the different contributions to the bi-spectrum and the parameter f_{NL} for an arbitrary triangular configuration of the wavevectors. Focusing firstly on the equilateral limit, we illustrate the accuracy of BINGO by comparing the results from the code with the spectral dependence of the bi-spectrum expected in power law inflation. Then, considering an arbitrary triangular configuration, we contrast the numerical results with the analytical expression available in the slow roll limit, for, say, the case of the conventional quadratic potential. Considering a non-trivial scenario involving deviations from slow roll, we compare the results from the code with the analytical results that have recently been obtained in the case of the Starobinsky model in the equilateral limit. As an immediate application, we utilize BINGO to examine of the power of the non-Gaussianity parameter f_{NL} to discriminate between various inflationary models that admit departures from slow roll and lead to similar features in the scalar power spectrum. We close with a summary and discussion on the implications of the results we obtain.Comment: v1: 5 pages, 5 figures; v2: 35 pages, 11 figures, title changed, extensively revised; v3: 36 pages, 11 figures, to appear in JCAP. The BINGO code is available online at http://www.physics.iitm.ac.in/~sriram/bingo/bingo.htm

    Self-consistent anisotropic oscillator with cranked angular and vortex velocities

    Full text link
    The Kelvin circulation is the kinematical Hermitian observable that measures the true character of nuclear rotation. For the anisotropic oscillator, mean field solutions with fixed angular momentum and Kelvin circulation are derived in analytic form. The cranking Lagrange multipliers corresponding to the two constraints are the angular and vortex velocities. Self-consistent solutions are reported with a constraint to constant volume.Comment: 12 pages, LaTex/RevTex, Phys. Rev. C4

    Central Pivot Heuristics for Botnet Attack Defense in Iot

    Get PDF
    Botnet assaults on IoT systems have become a big issue, and several strategies for botnet protection have been investigated by the academic and industry communities. While many of these methods are practical and effective for botnet attack prevention, one of the important limits is the load factor on the servers that manage monitoring and control in addition to catering to client system requests. To address load factor difficulties, the focus of this study report is on the conditions of installing a four-layer security control system based on the notion of central pivot points. Inspired by the effective and systematic Markov Chains concept, this publication proposes a four-layer filtering model that shows if botnet detection and prevention methods for servers are required. The model's simulated experimental study demonstrates the potential scope of deploying the system. The study also highlights the future possibilities of model improvisation that can reduce any erroneous signal production that is judged necessary
    corecore