3,938 research outputs found

    High-gain self-steering microwave repeater, volume 1 Final engineering report, Jan. 1966 - Apr. 1969

    Get PDF
    Engineering model of high gain self steering microwave transponder and application to satellite communication link

    Spacecraft antenna systems Final engineering report, Oct. 1963 - Jan. 1966

    Get PDF
    Spacecraft communication system with reliable, beam-steering antenn

    The Dimensional-Reduction Anomaly in Spherically Symmetric Spacetimes

    Get PDF
    In D-dimensional spacetimes which can be foliated by n-dimensional homogeneous subspaces, a quantum field can be decomposed in terms of modes on the subspaces, reducing the system to a collection of (D-n)-dimensional fields. This allows one to write bare D-dimensional field quantities like the Green function and the effective action as sums of their (D-n)-dimensional counterparts in the dimensionally reduced theory. It has been shown, however, that renormalization breaks this relationship between the original and dimensionally reduced theories, an effect called the dimensional-reduction anomaly. We examine the dimensional-reduction anomaly for the important case of spherically symmetric spaces.Comment: LaTeX, 19 pages, 2 figures. v2: calculations simplified, references adde

    Advanced microwave radiometer antenna system study

    Get PDF
    The practicability of a multi-frequency antenna for spaceborne microwave radiometers was considered in detail. The program consisted of a comparative study of various antenna systems, both mechanically and electronically scanned, in relation to specified design goals and desired system performance. The study involved several distinct tasks: definition of candidate antennas that are lightweight and that, at the specified frequencies of 5, 10, 18, 22, and 36 GHz, can provide conical scanning, dual linear polarization, and simultaneous multiple frequency operation; examination of various feed systems and phase-shifting techniques; detailed analysis of several key performance parameters such as beam efficiency, sidelobe level, and antenna beam footprint size; and conception of an antenna/feed system that could meet the design goals. Candidate antennas examined include phased arrays, lenses, and optical reflector systems. Mechanical, electrical, and performance characteristics of the various systems were tabulated for ease of comparison

    Absolute conservation law for black holes

    Get PDF
    In all 2d theories of gravity a conservation law connects the (space-time dependent) mass aspect function at all times and all radii with an integral of the matter fields. It depends on an arbitrary constant which may be interpreted as determining the initial value together with the initial values for the matter field. We discuss this for spherically reduced Einstein-gravity in a diagonal metric and in a Bondi-Sachs metric using the first order formulation of spherically reduced gravity, which allows easy and direct fixations of any type of gauge. The relation of our conserved quantity to the ADM and Bondi mass is investigated. Further possible applications (ideal fluid, black holes in higher dimensions or AdS spacetimes etc.) are straightforward generalizations.Comment: LaTex, 17 pages, final version, to appear in Phys. Rev.

    QCD Pressure and the Trace Anomaly

    Get PDF
    Exact relations between the QCD thermal pressure and the trace anomaly are derived. These are used, first, to prove the equivalence of the thermodynamic and the hydrodynamic pressure in equilibrium in the presence of the trace anomaly, closing a gap in previous arguments. Second, in the temporal axial gauge a formula is derived which expresses the thermal pressure in terms of a Dyson-resummed two-point function. This overcomes the infrared problems encountered in the conventional perturbation-theory approach.Comment: 9 pages plain te

    Universal conservation law and modified Noether symmetry in 2d models of gravity with matter

    Get PDF
    It is well-known that all 2d models of gravity---including theories with nonvanishing torsion and dilaton theories---can be solved exactly, if matter interactions are absent. An absolutely (in space and time) conserved quantity determines the global classification of all (classical) solutions. For the special case of spherically reduced Einstein gravity it coincides with the mass in the Schwarzschild solution. The corresponding Noether symmetry has been derived previously by P. Widerin and one of the authors (W.K.) for a specific 2d model with nonvanishing torsion. In the present paper this is generalized to all covariant 2d theories, including interactions with matter. The related Noether-like symmetry differs from the usual one. The parameters for the symmetry transformation of the geometric part and those of the matterfields are distinct. The total conservation law (a zero-form current) results from a two stage argument which also involves a consistency condition expressed by the conservation of a one-form matter ``current''. The black hole is treated as a special case.Comment: 3

    Two-dimensional effective action for matter fields coupled to the dilaton

    Get PDF
    We revise the calculation of the one-loop effective action for scalar and spinor fields coupled to the dilaton in two dimensions. Applying the method of covariant perturbation theory for the heat kernel we derive the effective action in an explicitly covariant form that produces both the conformally invariant and the conformally anomalous terms.For scalar fields the conformally invariant part of the action is nonlocal. The obtained effective action is proved to be infrared finite. We also compute the one-loop effective action for scalar fields at finite temperature.Comment: LaTeX, 25 page
    corecore