226 research outputs found

    Quasi-static stop band with flexural metamaterial having zero rotational stiffness

    Get PDF
    Metamaterials realizing stop bands have attracted much attentions recently since they can break-through the well-known mass law. However, achieving the stop band at extremely low frequency has been still a big challenge in the fields of elastic metamaterials. In this paper, we propose a new metamaterial based on the idea of the zero rotational stiffness, to achieve extremely low frequency stop band for flexural elastic waves. Unlike the previous ways to achieve the stop band, we found that the zero rotational stiffness can provide a broad stop band at extremely low frequency, which starts from even almost zero frequency. To achieve the zero rotational stiffness, we propose a new elastic metamaterial consisting of blocks and links with the hinge connection. Analytic developments as well as numerical simulations evidence that this new metamaterial can exhibit extremely low and broad stop band, even at the quasi-static ranges. In addition, the metamaterial is shown to exhibit the negative group velocity at extremely low frequency ranges, as well as the quasi-static stop band, if it is properly designed.ope

    Extraordinary absorption of sound in porous lamella-crystals

    Get PDF
    We present the design of a structured material supporting complete absorption of sound with a broadband response and functional for any direction of incident radiation. The structure which is fabricated out of porous lamellas is arranged into a low-density crystal and backed by a reflecting support. Experimental measurements show that strong all-angle sound absorption with almost zero reflectance takes place for a frequency range exceeding two octaves. We demonstrate that lowering the crystal filling fraction increases the wave interaction time and is responsible for the enhancement of intrinsic material dissipation, making the system more absorptive with less material.The work was supported by the Spanish Ministry of Science and Innovation and European Union FEDER through project FIS2011-29734-C02-01. J.C. gratefully acknowledges financial support from the Danish Council for Independent Research and a Sapere Aude grant (12-134776). V. R. G. gratefully acknowledges financial support from the ''Contratos Post-Doctorales Campus Excelencia Internacional'' UPV CEI-01-11.Christensen, J.; Romero García, V.; Picó Vila, R.; Cebrecos Ruiz, A.; Garcia De Abajo, FJ.; Mortensen, NA.; Willatzen, M.... (2014). Extraordinary absorption of sound in porous lamella-crystals. Scientific Reports. 4(4674). https://doi.org/10.1038/srep04674S44674Mei, J. et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3, 756 (2012).Leroy, V., Strybulevych, A., Scanlon, M. G. & Page, J. Transmission of ultrasound through a single layer of bubbles. Eur. Phys. J. E 29, 123 (2009).Leroy, V., Bretagne, A., Fink, M. H. W., Tabeling, P. & Tourin, A. Design and characterization of bubble phononic crystals. Appl. Phys. Lett. 95, 171904 (2009).Thomas, E. L. Applied physics: Bubbly but quiet. Nature 462, 990 (2009).Romero-García, V., Sánchez-Pérez, J. V. & Garcia-Raffi, L. M. Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems. J. Appl. Phys. 110, 014904 (2011).Garcia-Chocano, V. M., Cabrera, S. & Sanchez-Dehesa, J. Broadband sound absorption by lattices of microperforated cylindrical shells. Appl. Phys. Lett. 101, 184101 (2012).Kushwaha, M. S., Halevi, P., Dobrzynski, L. & Djafari-Rouhani, B. Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022 (1993).Vasseur, J. O. et al. Experimental and Theoretical Evidence for the Existence of Absolute Acoustic Band Gaps in Two-Dimensional Solid Phononic Crystals. Phys. Rev. Lett. 86, 3012 (2001).Liu, Z. et al. Locally Resonant Sonic Materials. Science 289, 1734 (2000).Christensen, J., Martin-Moreno, L. & Garcia-Vidal, F. J. All-angle blockage of sound by an acoustic double-fishnet metamaterial. Appl. Phys. Lett. 97, 134106 (2010).Botten, L. C., Craig, M. S., McPhedran, R. C., Adams, J. L. & Andrewartha, J. R. The finitely conducting lamellar diffraction grating. Optica Acta 28, 1087 (1981).McPhedran, R. C., Botten, L. C., Craif, M. S., Neviere, M. & Maystre, D. Lossy lamellar gratings in the quasistatic limit. Optica Acta 29, 289 (1982).Kravets, V. G., Schedin, F. & Grigorenko, A. N. Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings. Phys. Rev. B 78, 205405 (2008).Sondergaard, T. et al. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves. Nat. Commun. 3, 969 (2012).Clapham, P. B. & Hurtley, M. C. Reduction of Lens Reflexion by the Moth Eye Principle. Nature Vol. 244, 281 (1973).Garcia-Vidal, F. J., Pitarke, J. M. & Pendry, J. B. Effective Medium Theory of the Optical Properties of Aligned Carbon Nanotubes. Phys. Rev. Lett. 78, 4289 (1997).Yang, Z., Ci, L., Bur, J. A., Lin, S. & Ajayan, P. M. Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array. Nano Lett. 8, 446 (2008).Garcia-Vidal, F. J. Metamaterials: Towards the dark side. Nat. Photonics 2, 215 (2008).Mizunoa, K. et al. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 106, 6044 (2009).Lidorkis, E. & Ferrari, A. C. Photonics with Multiwall Carbon Nanotube Arrays. ACS Nano 3, 1238 (2009).Beenakker, C. W. J. & Brouwer, P. W. Distribution of the reflection eigenvalues of a weakly absorbing chaotic cavity. Physica E 9, 463 (2001).Lafarge, D., Lemarinier, P., Allard, J. F. & Tarnow, V. Dynamic compressibility of air in porous structures at audible frequencies. J. Acoust. Soc. Am. 102, 1995 (1997), With the macroscopic parameters: ϕ = 0.94, α∞ = 1, σ = 20000 Nm−4s and Λ = Λ′ = 0.41 μm.García de Abajo, F. J. Colloquium: Light scattering by particle and hole arrays. Rev. Mod. Phys. 79, 1267–1290 (2007)

    Stacked Hybridization to Enhance the Performance of Artificial Neural Networks (ANN) for Prediction of Water Quality Index in the Bagh River Basin, India

    Get PDF
    Data availability statement: The data pertaining to this study have not been deposited in a publicly accessible repository, given that all relevant data are thoroughly detailed in the article or appropriately cited in the manuscript.Water quality assessment is paramount for environmental monitoring and resource management, particularly in regions experiencing rapid urbanization and industrialization. This study introduces Artificial Neural Networks (ANN) and its hybrid machine learning models, namely ANN-RF (Random Forest), ANN-SVM (Support Vector Machine), ANN-RSS (Random Subspace), ANN-M5P (M5 Pruned), and ANN-AR (Additive Regression) for water quality assessment in the rapidly urbanizing and industrializing Bagh River Basin, India. The Relief algorithm was employed to select the most influential water quality input parameters, including Nitrate (NO3-), Magnesium (Mg2+), Sulphate (SO42-), Calcium (Ca2+), and Potassium (K+). The comparative analysis of developed ANN and its hybrid models was carried out using statistical indicators (i.e., Nash-Sutcliffe Efficiency (NSE), Pearson Correlation Coefficient (PCC), Coefficient of Determination (R2), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Root Square Error (RRSE), Relative Absolute Error (RAE), and Mean Bias Error (MBE) and graphical representations (i.e., Taylor diagram). Results indicate that the integration of support vector machine (SVM) with ANN significantly improves performance, yielding impressive statistical indicators: NSE (0.879), R2 (0.904), MAE (22.349), and MBE (12.548). The methodology outlined in this study can serve as a template for enhancing the predictive capabilities of ANN models in various other environmental and ecological applications, contributing to sustainable development and safeguarding natural resources.No funding was received for conducting this study

    Laparoscopy in management of appendicitis in high-, middle-, and low-income countries: a multicenter, prospective, cohort study.

    Get PDF
    BACKGROUND: Appendicitis is the most common abdominal surgical emergency worldwide. Differences between high- and low-income settings in the availability of laparoscopic appendectomy, alternative management choices, and outcomes are poorly described. The aim was to identify variation in surgical management and outcomes of appendicitis within low-, middle-, and high-Human Development Index (HDI) countries worldwide. METHODS: This is a multicenter, international prospective cohort study. Consecutive sampling of patients undergoing emergency appendectomy over 6 months was conducted. Follow-up lasted 30 days. RESULTS: 4546 patients from 52 countries underwent appendectomy (2499 high-, 1540 middle-, and 507 low-HDI groups). Surgical site infection (SSI) rates were higher in low-HDI (OR 2.57, 95% CI 1.33-4.99, p = 0.005) but not middle-HDI countries (OR 1.38, 95% CI 0.76-2.52, p = 0.291), compared with high-HDI countries after adjustment. A laparoscopic approach was common in high-HDI countries (1693/2499, 67.7%), but infrequent in low-HDI (41/507, 8.1%) and middle-HDI (132/1540, 8.6%) groups. After accounting for case-mix, laparoscopy was still associated with fewer overall complications (OR 0.55, 95% CI 0.42-0.71, p < 0.001) and SSIs (OR 0.22, 95% CI 0.14-0.33, p < 0.001). In propensity-score matched groups within low-/middle-HDI countries, laparoscopy was still associated with fewer overall complications (OR 0.23 95% CI 0.11-0.44) and SSI (OR 0.21 95% CI 0.09-0.45). CONCLUSION: A laparoscopic approach is associated with better outcomes and availability appears to differ by country HDI. Despite the profound clinical, operational, and financial barriers to its widespread introduction, laparoscopy could significantly improve outcomes for patients in low-resource environments. TRIAL REGISTRATION: NCT02179112

    Optomechanical Crystals

    Get PDF
    Structured, periodic optical materials can be used to form photonic crystals capable of dispersing, routing, and trapping light. A similar phenomena in periodic elastic structures can be used to manipulate mechanical vibrations. Here we present the design and experimental realization of strongly coupled optical and mechanical modes in a planar, periodic nanostructure on a silicon chip. 200-Terahertz photons are co-localized with mechanical modes of Gigahertz frequency and 100-femtogram mass. The effective coupling length, which describes the strength of the photon-phonon interaction, is as small as 2.9 microns, which, together with minute oscillator mass, allows all-optical actuation and transduction of nanomechanical motion with near quantum-limited sensitivity. Optomechanical crystals have many potential applications, from RF-over-optical communication to the study of quantum effects in mesoscopic mechanical systems.Comment: 16 pages, 7 figure

    Adverse Drug Reactions in Children—A Systematic Review

    Get PDF
    Adverse drug reactions in children are an important public health problem. We have undertaken a systematic review of observational studies in children in three settings: causing admission to hospital, occurring during hospital stay and occurring in the community. We were particularly interested in understanding how ADRs might be better detected, assessed and avoided
    corecore