2,368 research outputs found
Triggering of Imaging Air Cherenkov Telescopes: PMT trigger rates due to night-sky photons
Imaging air Cherenkov telescopes are usually triggered on a coincidence of
two or sometimes more pixels, with discriminator thresholds in excess of 20
photoelectrons applied for each pixel. These thresholds required to suppress
night-sky background are significantly higher than expected on the basis of a
Poisson distribution in the number of night-sky photoelectrons generated during
the characteristic signal integration time.
We studied noise trigger rates under controlled conditions using an
artificial background light source. Large tails in the PMT amplitude response
to single photoelectrons are identified as a dominant contribution to noise
triggers. The rate of such events is very sensitive to PMT operating
parameters.Comment: 19 pages, latex,epsf, 7 figures appended as uuencoded file, submitted
to Journal of Physics
Interplay between shear loading and structural aging in a physical gel
We show that the aging of the mechanical relaxation of a gelatin gel exhibits
the same scaling phenomenology as polymer and colloidal glasses. Besides,
gelatin is known to exhibit logarithmic structural aging (stiffening). We find
that stress accelerates this process. However, this effect is definitely
irreducible to a mere age shift with respect to natural aging. We suggest that
it is interpretable in terms of elastically-aided elementary (coilhelix)
local events whose dynamics gradually slows down as aging increases geometric
frustration
Latent regulatory potential of human-specific repetitive elements
At least half of the human genome is derived from repetitive elements, which are often lineage specific and silenced by a variety of genetic and epigenetic mechanisms. Using a transchromosomic mouse strain that transmits an almost complete single copy of human chromosome 21 via the female germline, we show that a heterologous regulatory environment can transcriptionally activate transposon-derived human regulatory regions. In the mouse nucleus, hundreds of locations on human chromosome 21 newly associate with activating histone modifications in both somatic and germline tissues, and influence the gene expression of nearby transcripts. These regions are enriched with primate and human lineage-specific transposable elements, and their activation corresponds to changes in DNA methylation at CpG dinucleotides. This study reveals the latent regulatory potential of the repetitive human genome and illustrates the species specificity of mechanisms that control it
Mechanical response of plectonemic DNA: an analytical solution
We consider an elastic rod model for twisted DNA in the plectonemic regime.
The molecule is treated as an impenetrable tube with an effective, adjustable
radius. The model is solved analytically and we derive formulas for the contact
pressure, twisting moment and geometrical parameters of the supercoiled region.
We apply our model to magnetic tweezer experiments of a DNA molecule subjected
to a tensile force and a torque, and extract mechanical and geometrical
quantities from the linear part of the experimental response curve. These
reconstructed values are derived in a self-contained manner, and are found to
be consistent with those available in the literature.Comment: 14 pages, 4 figure
Scintillator counters with WLS fiber/MPPC readout for the side muon range detector (SMRD)of the T2K experiment
The T2K neutrino experiment at J-PARC uses a set of near detectors to measure
the properties of an unoscillated neutrino beam and neutrino interaction
cross-sections. One of the sub-detectors of the near-detector complex, the side
muon range detector (SMRD), is described in the paper. The detector is designed
to help measure the neutrino energy spectrum, to identify background and to
calibrate the other detectors. The active elements of the SMRD consist of 0.7
cm thick extruded scintillator slabs inserted into air gaps of the UA1 magnet
yokes. The readout of each scintillator slab is provided through a single WLS
fiber embedded into a serpentine shaped groove. Two Hamamatsu multi-pixel
avalanche photodiodes (MPPC's) are coupled to both ends of the WLS fiber. This
design allows us to achieve a high MIP detection efficiency of greater than
99%. A light yield of 25-50 p.e./MIP, a time resolution of about 1 ns and a
spatial resolution along the slab better than 10 cm were obtained for the SMRD
counters.Comment: 7 pages, 4 figures; talk at TIPP09, March 12-17, Tsukuba, Japan; to
be published in the conference proceeding
The T2K Side Muon Range Detector
The T2K experiment is a long baseline neutrino oscillation experiment aiming
to observe the appearance of {\nu} e in a {\nu}{\mu} beam. The {\nu}{\mu} beam
is produced at the Japan Proton Accelerator Research Complex (J-PARC), observed
with the 295 km distant Super- Kamiokande Detector and monitored by a suite of
near detectors at 280m from the proton target. The near detectors include a
magnetized off-axis detector (ND280) which measures the un-oscillated neutrino
flux and neutrino cross sections. The present paper describes the outermost
component of ND280 which is a side muon range detector (SMRD) composed of
scintillation counters with embedded wavelength shifting fibers and Multi-Pixel
Photon Counter read-out. The components, performance and response of the SMRD
are presented.Comment: 13 pages, 19 figures v2: fixed several typos; fixed reference
Experimental study of the atmospheric neutrino backgrounds for proton decay to positron and neutral pion searches in water Cherenkov detectors
The atmospheric neutrino background for proton decay to positron and neutral
pion in ring imaging water Cherenkov detectors is studied with an artificial
accelerator neutrino beam for the first time. In total, about 314,000 neutrino
events corresponding to about 10 megaton-years of atmospheric neutrino
interactions were collected by a 1,000 ton water Cherenkov detector (KT). The
KT charged-current single neutral pion production data are well reproduced by
simulation programs of neutrino and secondary hadronic interactions used in the
Super-Kamiokande (SK) proton decay search. The obtained proton to positron and
neutral pion background rate by the KT data for SK from the atmospheric
neutrinos whose energies are below 3 GeV is about two per megaton-year. This
result is also relevant to possible future, megaton-scale water Cherenkov
detectors.Comment: 13 pages, 16 figure
Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target
111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA
Recommended from our members
Searches For High-Frequency Variations In The B-8 Solar Neutrino Flux At The Sudbury Neutrino Observatory
We have performed three searches for high-frequency signals in the solar neutrino flux measured by the Sudbury Neutrino Observatory, motivated by the possibility that solar g-mode oscillations could affect the production or propagation of solar B-8 neutrinos. The first search looked for any significant peak in the frequency range 1-144 day(-1), with a sensitivity to sinusoidal signals with amplitudes of 12% or greater. The second search focused on regions in which g-mode signals have been claimed by experiments aboard the Solar and Heliospheric Observatory satellite, and was sensitive to signals with amplitudes of 10% or greater. The third search looked for extra power across the entire frequency band. No statistically significant signal was detected in any of the three searches.Natural Sciences and Engineering Research Council, CanadaIndustry Canada, CanadaNational Research Council, CanadaNorthern Ontario Heritage Fund, CanadaAtomic Energy of Canada, Ltd., CanadaOntario Power Generation, CanadaHigh Performance Computing Virtual Laboratory, CanadaCanada Foundation for InnovationDept. of Energy, USNational Energy Research Scientific Computing Center, USScience and Technologies Facilities Council, UKAstronom
Measurement of the Total Active 8B Solar Neutrino Flux at the Sudbury Neutrino Observatory with Enhanced Neutral Current Sensitivity
The Sudbury Neutrino Observatory (SNO) has precisely determined the total
active (nu_x) 8B solar neutrino flux without assumptions about the energy
dependence of the nu_e survival probability. The measurements were made with
dissolved NaCl in the heavy water to enhance the sensitivity and signature for
neutral-current interactions. The flux is found to be 5.21 +/- 0.27 (stat) +/-
0.38 (syst) x10^6 cm^{-2}s^{-1}, in agreement with previous measurements and
standard solar models. A global analysis of these and other solar and reactor
neutrino results yields Delta m^{2} = 7.1^{+1.2}_{-0.6}x10^{-5} ev^2 and theta
= 32.5^{+2.4}_{-2.3} degrees. Maximal mixing is rejected at the equivalent of
5.4 standard deviations.Comment: Submitted to Phys. Rev. Let
- …
