2,489 research outputs found
The Most Severe Test for Hydrophobicity Scales: Two Proteins with 88% Sequence Identity but Different Structure and Function
Protein-protein interactions (protein functionalities) are mediated by water,
which compacts individual proteins and promotes close and temporarily stable
large-area protein-protein interfaces. In their classic paper Kyte and
Doolittle (KD) concluded that the "simplicity and graphic nature of
hydrophobicity scales make them very useful tools for the evaluation of protein
structures". In practice, however, attempts to develop hydrophobicity scales
(for example, compatible with classical force fields (CFF) in calculating the
energetics of protein folding) have encountered many difficulties. Here we
suggest an entirely different approach, based on the idea that proteins are
self-organized networks, subject to finite-scale criticality (like some network
glasses). We test this proposal against two small proteins that are delicately
balanced between alpha and alpha/beta structures, with different functions
encoded with only 12% of their amino acids. This example explains why protein
structure prediction is so challenging, and it provides a severe test for the
accuracy and content of hydrophobicity scales. The new method confirms KD's
evaluation, and at the same time suggests that protein structure, dynamics and
function can be best discussed without using CFF
Geological record and reconstruction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean
Analysis of high velocity free surface flow interaction with a bridge pier in a trapezoidal channel using CFD
This study uses the computational fluid dynamics (CFD) code ANSYS-CFX-12, to simulate 3D flow through a straight trapezoidal cross section channel containing a single bridge pier. The fluid flow condition is assumed to be steady state, isothermal and incompressible, with symmetry along the centerline of the channel, and the simulation uses the − turbulence model. The study investigates the impact of variations of aspect ratio (channel bed width/flow depth), bed and side slopes of the channel, discharge (represented by a Froude number), and the length and thickness of the bridge pier on the free surface flow profile, both along the centerline and the on the wall of the channel. The code is based on the finite volume method, and uses the volume of fluid (VOF) approach to predict the free surface flow profile. Prediction of the free surface flow profile is essential for the design of high velocity channels. Prior prediction of flow profiles can inform and improve the design of expensive structures, such as high velocity channels and bridges, in particular the height of channel walls and bridge decks. Firstly, the code was validated against the numerical and experimental work of Stockstill (1996) for a channel containing three piers, and found to agree well. Then, the method was applied to the design test case, and mesh convergence tests to establish the required mesh size were carried out. The simulations were conducted in parallel over 32 cores on the Plymouth University High Performance Computer Cluster (HPCC). Finally, a parametric study was carried out and analytical expressions derived for maximum flow depth at the centre-line and at the side wall of the channel. Useful non-dimensional curves and equations derived from regressions of the study data are provided, which can be used as a guideline for the design of high velocity channels containing a bridge pier. For data regressions the statistical package software Statistical Product and Service Solutions (SPSS) was used
Endogeneous Versus Exogeneous Shocks in Systems with Memory
Systems with long-range persistence and memory are shown to exhibit different
precursory as well as recovery patterns in response to shocks of exogeneous
versus endogeneous origins. By endogeneous, we envision either fluctuations
resulting from an underlying chaotic dynamics or from a stochastic forcing
origin which may be external or be an effective coarse-grained description of
the microscopic fluctuations. In this scenario, endogeneous shocks result from
a kind of constructive interference of accumulated fluctuations whose impacts
survive longer than the large shocks themselves. As a consequence, the recovery
after an endogeneous shock is in general slower at early times and can be at
long times either slower or faster than after an exogeneous perturbation. This
offers the tantalizing possibility of distinguishing between an endogeneous
versus exogeneous cause of a given shock, even when there is no ``smoking
gun.'' This could help in investigating the exogeneous versus self-organized
origins in problems such as the causes of major biological extinctions, of
change of weather regimes and of the climate, in tracing the source of social
upheaval and wars, and so on. Sornette, Malevergne and Muzy have already shown
how this concept can be applied concretely to differentiate the effects on
financial markets of the Sept. 11, 2001 attack or of the coup against Gorbachev
on Aug., 19, 1991 (exogeneous) from financial crashes such as Oct. 1987
(endogeneous).Comment: Latex document of 14 pages with 3 eps figure
Hydrophobic gating of mechanosensitive channel of large conductance evidenced by single-subunit resolution
Mechanosensitive (MS) ion channels are membrane proteins that detect and respond to membrane tension in all branches of life. In bacteria, MS channels prevent cells from lysing upon sudden hypoosmotic shock by opening and releasing solutes and water. Despite the importance of MS channels and ongoing efforts to explain their functioning, the molecular mechanism of MS channel gating remains elusive and controversial. Here we report a method that allows single-subunit resolution for manipulating and monitoring “mechanosensitive channel of large conductance” from Escherichia coli. We gradually changed the hydrophobicity of the pore constriction in this homopentameric protein by modifying a critical pore residue one subunit at a time. Our experimental results suggest that both channel opening and closing are initiated by the transmembrane 1 helix of a single subunit and that the participation of each of the five identical subunits in the structural transitions between the closed and open states is asymmetrical. Such a minimal change in the pore environment seems ideal for a fast and energy-efficient response to changes in the membrane tension.
Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin
One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution
A Small Conductance Calcium-Activated K<sup>+</sup> Channel in C. elegans, KCNL-2, Plays a Role in the Regulation of the Rate of Egg-Laying
In the nervous system of mice, small conductance calcium-activated potassium (SK) channels function to regulate neuronal excitability through the generation of a component of the medium afterhyperpolarization that follows action potentials. In humans, irregular action potential firing frequency underlies diseases such as ataxia, epilepsy, schizophrenia and Parkinson's disease. Due to the complexity of studying protein function in the mammalian nervous system, we sought to characterize an SK channel homologue, KCNL-2, in C. elegans, a genetically tractable system in which the lineage of individual neurons was mapped from their early developmental stages. Sequence analysis of the KCNL-2 protein reveals that the six transmembrane domains, the potassium-selective pore and the calmodulin binding domain are highly conserved with the mammalian homologues. We used widefield and confocal fluorescent imaging to show that a fusion construct of KCNL-2 with GFP in transgenic lines is expressed in the nervous system of C. elegans. We also show that a KCNL-2 null strain, kcnl-2(tm1885), demonstrates a mild egg-laying defective phenotype, a phenotype that is rescued in a KCNL-2-dependent manner. Conversely, we show that transgenic lines that overexpress KCNL-2 demonstrate a hyperactive egg-laying phenotype. In this study, we show that the vulva of transgenic hermaphrodites is highly innervated by neuronal processes and by the VC4 and VC5 neurons that express GFP-tagged KCNL-2. We propose that KCNL-2 functions in the nervous system of C. elegans to regulate the rate of egg-laying. © 2013 Chotoo et al
GUP1 and its close homologue GUP2, encoding multi-membrane-spanning proteins involved in active glycerol uptake in Saccharomyces cerevisiae
Many yeast species can utilise glycerol, both as sole carbon source and as an osmolyte. In Saccharomyces cerevisiae, physiological studies have previously shown the presence of an active uptake system driven by electrogenic proton symport. We have used transposon mutagenesis to isolate mutants affected in the transport of glycerol into the cell. Here we present the identification of YGL084c, encoding a multi-membrane-spanning protein, as being essential for proton symport of glycerol into Saccharomyces cerevisiae. The gene is named GUP1 (Glycerol UPtake) and is important for growth on glycerol as carbon and energy source, as well as for osmotic protection by added glycerol, of a strain deficient in glycerol production. Another ORF, YPL189w, presenting a high degree of homology to YGL084c, similarly appears to be involved in active glycerol uptake in salt-containing glucose-based media in strains deficient in glycerol production. Analogously, this gene is named GUP2. To our knowledge, this is the first report on a gene product involved in active transport of glycerol in yeasts. Mutations with the same phenotypes occurred in two other open reading frames of previously unknown function, YDL074c and YPL180w.Comunidade Europeia (CE) - contract BIO4-CT95-0161
Comparison of Internal Ribosome Entry Site (IRES) and Furin-2A (F2A) for Monoclonal Antibody Expression Level and Quality in CHO Cells
10.1371/journal.pone.0063247PLoS ONE85
- …
