5,351 research outputs found
Stein factors for negative binomial approximation in Wasserstein distance
The paper gives the bounds on the solutions to a Stein equation for the
negative binomial distribution that are needed for approximation in terms of
the Wasserstein metric. The proofs are probabilistic, and follow the approach
introduced in Barbour and Xia (Bernoulli 12 (2006) 943-954). The bounds are
used to quantify the accuracy of negative binomial approximation to parasite
counts in hosts. Since the infectivity of a population can be expected to be
proportional to its total parasite burden, the Wasserstein metric is the
appropriate choice.Comment: Published at http://dx.doi.org/10.3150/14-BEJ595 in the Bernoulli
(http://isi.cbs.nl/bernoulli/) by the International Statistical
Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
Hydrographic data from R/V endeavor cruise #90
The final cruise of the NSF sponsored Warm Core Rings Program studied a Warm Core Ring (WCR) in the Fall of 1982 as it formed from a large northward meander of the Gulf Stream. This ring, known as 82-H or the eighth ring identified in 1982, formed over the New England Seamounts near 39.5 deg N, 65 deg W. Surveys using Expendable Bathythermographs, Conductivity-Temperature-Depth-Oxygen stations and Doppler Current Profiling provide a look at the genesis of a WCR. These measurements reveal that WCR 82-H separated from the Gulf Stream sometime between October 2-5. This ring was a typical WCR with a diameter of about 200 km and speeds in the high velocity core of the 175 cm/sec. Satellite imagery of 82-H following the cruise showed that it drifted WSW in the Slope Water region at almost 9 km/day, had at least one interaction with the Gulf Stream and was last observed on February 8, 1983 at 39 deg N, 72 deg W
A law of large numbers approximation for Markov population processes with countably many types
When modelling metapopulation dynamics, the influence of a single patch on
the metapopulation depends on the number of individuals in the patch. Since the
population size has no natural upper limit, this leads to systems in which
there are countably infinitely many possible types of individual. Analogous
considerations apply in the transmission of parasitic diseases. In this paper,
we prove a law of large numbers for rather general systems of this kind,
together with a rather sharp bound on the rate of convergence in an
appropriately chosen weighted norm.Comment: revised version in response to referee comments, 34 page
The geometry of the Barbour-Bertotti theories I. The reduction process
The dynamics of interacting particles is investigated in the
non-relativistic context of the Barbour-Bertotti theories. The reduction
process on this constrained system yields a Lagrangian in the form of a
Riemannian line element. The involved metric, degenerate in the flat
configuration space, is the first fundamental form of the space of orbits of
translations and rotations (the Leibniz group). The Riemann tensor and the
scalar curvature are computed by a generalized Gauss formula in terms of the
vorticity tensors of generators of the rotations. The curvature scalar is
further given in terms of the principal moments of inertia of the system. Line
configurations are singular for . A comparison with similar methods in
molecular dynamics is traced.Comment: 15 pages, to appear in Classical and Quantum Gravit
Poisson approximations for the Ising model
A -dimensional Ising model on a lattice torus is considered. As the size
of the lattice tends to infinity, a Poisson approximation is given for the
distribution of the number of copies in the lattice of any given local
configuration, provided the magnetic field tends to and the
pair potential remains fixed. Using the Stein-Chen method, a bound is given
for the total variation error in the ferromagnetic case.Comment: 25 pages, 1 figur
Quenched QCD at finite density
Simulations of quenched at relatively small but {\it nonzero} chemical
potential on lattices indicate that the nucleon
screening mass decreases linearly as increases predicting a critical
chemical potential of one third the nucleon mass, , by extrapolation.
The meson spectrum does not change as increases over the same range, from
zero to . Past studies of quenched lattice QCD have suggested that
there is phase transition at . We provide alternative
explanations for these results, and find a number of technical reasons why
standard lattice simulation techniques suffer from greatly enhanced
fluctuations and finite size effects for ranging from to
. We find evidence for such problems in our simulations, and suggest
that they can be surmounted by improved measurement techniques.Comment: 23 pages, Revte
Covariant quantization of membrane dynamics
A Lorentz covariant quantization of membrane dynamics is defined, which also
leaves unbroken the full three dimensional diffeomorphism invariance of the
membrane. Among the applications studied are the reduction to string theory,
which may be understood in terms of the phase space and constraints, and the
interpretation of physical,zero-energy states. A matrix regularization is
defined as in the light cone gauged fixed theory but there are difficulties
implementing all the gauge symmetries. The problem involves the
non-area-preserving diffeomorphisms which are realized non-linearly in the
classical theory. In the quantum theory they do not seem to have a consistent
implementation for finite N. Finally, an approach to a genuinely background
independent formulation of matrix dynamics is briefly described.Comment: Latex, 21 pages, no figure
The Definition of Mach's Principle
Two definitions of Mach's principle are proposed. Both are related to gauge
theory, are universal in scope and amount to formulations of causality that
take into account the relational nature of position, time, and size. One of
them leads directly to general relativity and may have relevance to the problem
of creating a quantum theory of gravity.Comment: To be published in Foundations of Physics as invited contribution to
Peter Mittelstaedt's 80th Birthday Festschrift. 30 page
Relational Particle Models. II. Use as toy models for quantum geometrodynamics
Relational particle models are employed as toy models for the study of the
Problem of Time in quantum geometrodynamics. These models' analogue of the thin
sandwich is resolved. It is argued that the relative configuration space and
shape space of these models are close analogues from various perspectives of
superspace and conformal superspace respectively. The geometry of these spaces
and quantization thereupon is presented. A quantity that is frozen in the scale
invariant relational particle model is demonstrated to be an internal time in a
certain portion of the relational particle reformulation of Newtonian
mechanics. The semiclassical approach for these models is studied as an
emergent time resolution for these models, as are consistent records
approaches.Comment: Replaced with published version. Minor changes only; 1 reference
correcte
Only connect: addressing the emotional needs of Scotland's children and young people
A report on the SNAP (Scottish Needs Assessment Programme) Child and Adolescent Mental Health Phase Two survey. It describes a survey of a wide range of professionals working with children and young people in Scotland, and deals with professional perspectives on emotional, behavioural and psychological problems. Conclusions and recommendations are presented
- …
