397,730 research outputs found
Chiral expansion of the decay width
A chiral field theory of mesons has been applied to study the contribution of
the current quark masses to the decay width at
the next leading order. enhancement has been predicted and there is no
new parameter.Comment: 9 page
"Hidden” degassing from streams: estimation of the CO2 release from the thermal springs of Sperchios Basin, Greece
Areas located at plate boundaries are characterized by the presence of seismic, volcanic, and geothermal activity, as well as ore deposition. Such processes are enhanced by the circulation of hydrothermal fluids in the crust transporting volatiles from either the deep crust or the mantle to the surface. Intense geodynamic activity is also taking place in Greece giving rise to: (i) the highest seismicity in Europe, (ii) the presence of an active volcanic arc and numerous areas of anomalously high geothermal gradient, and (iii) a widespread occurrence of thermal springs. Elevated heat flow values are concentrated in Sperchios basin, an area characterised by a system of deeply rooted extensional faults and quaternary volcanic activity. This regime favoured the formation of hydrothermal systems, the surface expression of which are thermal springs with intense bubbling of CO2-rich gases. Flux measurements in the bubbling pools were made with the floating chamber method. The highest bubbling CO2 output is found in Thermopyles and Psoroneria (1 and 2 t/d, respectively). The outgoing channels of these springs have an elevated flow (>250 l/s) of gas-charged water (>15 mmol/l of CO2). Although no bubbling is noticed along the stream, the CO2 content decreases by an order of magnitude after few hundreds of metres, indicating an intense degassing from the water. Taking into account the water flow and the amount of CO2 lost to the atmosphere, the CO2 output of the outgoing channels is quantified in >10 t/d for Thermopyles and 9 t/d for Psoroneria. An estimation is also made at Ypati, Kamena Vourla, Koniavitis and Edipsos, where the mean values reach 1 t/d of CO2 for each spring. The obtained values are always higher respect to the estimated outputs from visible bubbling, suggesting that most of the degassing is “hidden”. Furthermore, the loss of CO2 from the water determines a shift in dissolved carbonate species as demonstrated by the pH increase along the channel that leads eventually to an oversaturation in carbonate minerals and therefore travertine deposition. To sum up, the total CO2 output of the study area is estimated at 30 t/d, with the major contribution deriving from the degassing along the outflow channels of the thermal springs. Such output is comparable to that of the single active volcanic systems along the South Aegean Volcanic Arc (Sousaki, Methana, Milos, Santorini, Kos and Nisyros) and highlights the importance of “hidden” degassing along CO2-oversaturated streams
Correlations of chaotic eigenfunctions: a semiclassical analysis
We derive a semiclassical expression for an energy smoothed autocorrelation
function defined on a group of eigenstates of the Schr\"odinger equation. The
system we considered is an energy-conserved Hamiltonian system possessing
time-invariant symmetry. The energy smoothed autocorrelation function is
expressed as a sum of three terms. The first one is analogous to Berry's
conjecture, which is a Bessel function of the zeroth order. The second and the
third terms are trace formulae made from special trajectories. The second term
is found to be direction dependent in the case of spacing averaging, which
agrees qualitatively with previous numerical observations in high-lying
eigenstates of a chaotic billiard.Comment: Revtex, 13 pages, 1 postscript figur
Massive MIMO 1-Bit DAC Transmission: A Low-Complexity Symbol Scaling Approach
We study multi-user massive multiple-input single-output (MISO) systems and
focus on downlink transmission, where the base station (BS) employs a large
antenna array with low-cost 1-bit digital-to-analog converters (DACs). The
direct combination of existing beamforming schemes with 1-bit DACs is shown to
lead to an error floor at medium-to-high SNR regime, due to the coarse
quantization of the DACs with limited precision. In this paper, based on the
constructive interference we consider both a quantized linear beamforming
scheme where we analytically obtain the optimal beamforming matrix, and a
non-linear mapping scheme where we directly design the transmit signal vector.
Due to the 1-bit quantization, the formulated optimization for the non-linear
mapping scheme is shown to be non-convex. To solve this problem, the non-convex
constraints of the 1-bit DACs are firstly relaxed, followed by an element-wise
normalization to satisfy the 1-bit DAC transmission. We further propose a
low-complexity symbol scaling scheme that consists of three stages, in which
the quantized transmit signal on each antenna element is selected sequentially.
Numerical results show that the proposed symbol scaling scheme achieves a
comparable performance to the optimization-based non-linear mapping approach,
while its corresponding complexity is negligible compared to that of the
non-linear scheme.Comment: 15 page
Thermal effects on nuclear symmetry energy with a momentum-dependent effective interaction
The knowledge of the nuclear symmetry energy of hot neutron-rich matter is
important for understanding the dynamical evolution of massive stars and the
supernova explosion mechanisms. In particular, the electron capture rate on
nuclei and/or free protons in presupernova explosions is especially sensitive
to the symmetry energy at finite temperature. In view of the above, in the
present work we calculate the symmetry energy as a function of the temperature
for various values of the baryon density, by applying a momentum-dependent
effective interaction. In addition to a previous work, the thermal effects are
studied separately both in the kinetic part and the interaction part of the
symmetry energy. We focus also on the calculations of the mean field potential,
employed extensively in heavy ion reaction research, both for nuclear and pure
neutron matter. The proton fraction and the electron chemical potential, which
are crucial quantities for representing the thermal evolution of supernova and
neutron stars, are calculated for various values of the temperature. Finally,
we construct a temperature dependent equation of state of -stable
nuclear matter, the basic ingredient for the evaluation of the neutron star
properties.Comment: 18 pages, 10 figures, 1 table, accepted for publication in Physical
Review
- …
