695 research outputs found
Trait-like characteristics of the sleep EEG across adolescent development
Waking and sleep data in adults show high heritability and trait-like characteristics in EEG spectra. This phenomenon has not been examined in children and adolescents where brain development influences the EEG. The present study examines whether a trait-like sleep EEG pattern is detectable across adolescent development. Two consecutive nights of standard sleep recordings were performed in 19 9-10-year-old children and 26 15-16-year-old teens, and were repeated 1.5-3 years later. EEG spectra averaged across the night for non-rapid eye movement and rapid eye movement sleep separately were classified using hierarchical cluster analysis, which showed that all 4 nights of a participant clustered together for a majority of participants. Intraclass correlation coefficients were also very high (>0.7) across nights separated by several years, indicating a trait-like feature of the sleep EEG. In summary, our results, using two measures of stability, indicate that a "trait-like" aspect can be detected in the sleep EEG across adolescent development despite considerable neurodevelopmental changes. This finding indicates that the brain oscillators responsible for generating the sleep EEG signal remain relatively stable across adolescent development
Different regimes of Forster energy transfer between an epitaxial quantum well and a proximal monolayer of semiconductor nanocrystals
We calculate the rate of non-radiative, Forster-type energy transfer (ET)
from an excited epitaxial quantum well (QW) to a proximal monolayer of
semiconductor nanocrystal quantum dots (QDs). Different electron-hole
configurations in the QW are considered as a function of temperature and
excited electron-hole density. A comparison of the theoretically determined ET
rate and QW radiative recombination rate shows that, depending on the specific
conditions, the ET rate is comparable to or even greater than the radiative
recombination rate. Such efficient Forster ET is promising for the
implementation of ET-pumped, nanocrystal QD-based light emitting devices.Comment: 14 pages, 4 figure
The spectrum of phenotypes associated with mutations in steroidogenic factor 1 (SF-1, NR5A1, Ad4BP) includes severe penoscrotal hypospadias in 46,XY males without adrenal insufficiency
OBJECTIVE. Hypospadias is a frequent congenital anomaly but in most cases an underlying cause is not found. Steroidogenic factor 1 (SF-1, NR5A1, Ad4BP) is a key regulator of human sex development and an increasing number of SF-1 (NR5A1) mutations are reported in 46,XY disorders of sex development (DSD). We hypothesized that NR5A1 mutations could be identified in boys with hypospadias.
DESIGN AND METHODS. Mutational analysis of NR5A1 in 60 individuals with varying degrees of hypospadias from the German DSD network.
RESULTS. Heterozygous NR5A1 mutations were found in three out of 60 cases. These three individuals represented the most severe end of the spectrum studied as they presented with penoscrotal hypospadias, variable androgenization of the phallus and undescended testes (three out of 20 cases (15%) with this phenotype). Testosterone was low in all three patients and inhibin B/anti-Müllerian hormone (AMH) were low in two patients. Two patients had a clear male gender assignment. Gender re-assignment to male occurred in the third case. Two patients harbored heterozygous nonsense mutations (p.Q107X/WT, p.E11X/WT). One patient had a heterozygous splice site mutation in intron 2 (c.103-3A/WT) predicted to disrupt the main DNA-binding motif. Functional studies of the nonsense mutants showed impaired transcriptional activation of an SF-1-responsive promoter (Cyp11a). To date, adrenal insufficiency has not occurred in any of the patients.
CONCLUSIONS. SF-1 (NR5A1) mutations should be considered in 46,XY individuals with severe (penoscrotal) hypospadias, especially if undescended testes, low testosterone, or low inhibin B/AMH levels are present. SF-1 mutations in milder forms of idiopathic hypospadias are unlikely to be common
Clinical case seminar - Hypogonadotropic hypogonadism as a presenting feature of late-onset X-linked adrenal hypoplasia congenita
Mutations in the orphan nuclear receptor DAX-1 cause X-linked adrenal hypoplasia congenita. Affected boys usually present with primary adrenal failure in early infancy or childhood. Impaired sexual development because of hypogonadotropic hypogonadism becomes apparent at the time of puberty. We report adult-onset adrenal hypoplasia congenita in a patient who presented with hypogonadism at 28 yr of age. Although he had no clinical evidence of adrenal dysfunction, compensated primary adrenal failure was diagnosed by biochemical testing. Semen analysis showed azoospermia, and he did not achieve fertility after 8 months of treatment with gonadotropins. A novel Y380D DAX-1 missense mutation, which causes partial loss of function in transient gene expression assays, was found in this patient. This case demonstrates that partial loss-of-function mutations in DAX1 can present with hypogonadotropic hypogonadism and covert adrenal failure in adulthood. Further, an important role for DAX-1 in spermatogenesis in humans is confirmed, supporting findings in the Dax1 (Ahch) knockout mouse
Severe loss-of-function mutations in the adrenocorticotropin receptor (ACTHR, MC2R) can be found in patients diagnosed with salt-losing adrenal hypoplasia
Objective: Familial glucocorticoid deficiency type I (FGD1) is a rare form of primary adrenal insufficiency resulting from recessive mutations in the ACTH receptor (MC2R, MC2R). Individuals with this condition typically present in infancy or childhood with signs and symptoms of cortisol insufficiency, but disturbances in the renin-angiotensin system, aldosterone synthesis or sodium homeostasis are not a well-documented association of FGD1. As ACTH stimulation has been shown to stimulate aldosterone release in normal controls, and other causes of hyponatraemia can occur in children with cortisol deficiency, we investigated whether MC2R changes might be identified in children with primary adrenal failure who were being treated for mineralocorticoid insufficiency.
Design: Mutational analysis of MC2R by direct sequencing.
Patients: Children (n = 22) who had been diagnosed with salt-losing forms of adrenal hypoplasia (19 isolated cases, 3 familial), and who were negative for mutations in DAX1 (NR0B1) and SF1 (NR5A1).
Results: MC2R mutations were found in three individuals or kindred (I: homozygous S74I; II: novel compound heterozygous R146H/560delT; III: novel homozygous 579-581delTGT). These changes represent severely disruptive loss-of-function mutations in this G-protein coupled receptor, including the first reported homozygous frameshift mutation. The apparent disturbances in sodium homeostasis were mild, manifest at times of stress (e.g. infection, salt-restriction, heat), and likely resolved with time.
Conclusions: MC2R mutations should be considered in children who have primary adrenal failure with apparent mild disturbances in renin-sodium homeostasis. These children may have been misdiagnosed as having salt-losing adrenal hypoplasia. Making this diagnosis has important implications for treatment, counselling and long-term prognosi
Sleep Spindles Are Related to Schizotypal Personality Traits and Thalamic Glutamine/Glutamate in Healthy Subjects
Background: Schizophrenia is a severe mental disorder affecting approximately 1% of the worldwide population. Yet, schizophrenia-like experiences (schizotypy) are very common in the healthy population, indicating a continuum between normal mental functioning and the psychosis found in schizophrenic patients. A continuum between schizotypy and schizophrenia would be supported if they share the same neurobiological origin. Two such neurobiological markers of schizophrenia are: (1) a reduction of sleep spindles (12-15 Hz oscillations during nonrapid eye movement sleep), likely reflecting deficits in thalamo-cortical circuits and (2) increased glutamine and glutamate (Glx) levels in the thalamus. Thus, this study aimed to investigate whether sleep spindles and Glx levels are related to schizotypal personality traits in healthy subjects. Methods: Twenty young male subjects underwent 2 all-night sleep electroencephalography recordings (128 electrodes). Sleep spindles were detected automatically. After those 2 nights, thalamic Glx levels were measured by magnetic resonance spectroscopy. Subjects completed a magical ideation scale to assess schizotypy. Results: Sleep spindle density was negatively correlated with magical ideation (r = −.64, P .1). Conclusions: The common relationship of sleep spindle density with schizotypy and thalamic Glx levels indicates a neurobiological overlap between nonclinical schizotypy and schizophrenia. Thus, sleep spindle density and magical ideation may reflect the anatomy and efficiency of the thalamo-cortical system that shows pronounced impairment in patients with schizophreni
A genomic atlas of human adrenal and gonad development [version 2; referees: 4 approved]
BACKGROUND: In humans, the adrenal glands and gonads undergo distinct
biological events between 6-10 weeks post conception (wpc), such as testis
determination, the onset of steroidogenesis and primordial germ cell
development. However, relatively little is currently known about the genetic
mechanisms underlying these processes. We therefore aimed to generate a
detailed genomic atlas of adrenal and gonad development across these critical
stages of human embryonic and fetal development.
METHODS: RNA was extracted from 53 tissue samples between 6-10 wpc
(adrenal, testis, ovary and control). Affymetrix array analysis was performed
and differential gene expression was analysed using Bioconductor. A
mathematical model was constructed to investigate time-series changes across
the dataset. Pathway analysis was performed using ClueGo and cellular
localisation of novel factors confirmed using immunohistochemistry.
RESULTS: Using this approach, we have identified novel components of adrenal
development (e.g. ASB4, NPR3) and confirmed the role of SRY as the main
human testis-determining gene. By mathematical modelling time-series data
we have found new genes up-regulated with SOX9 in the testis (e.g. CITED1),
which may represent components of the testis development pathway. We have
shown that testicular steroidogenesis has a distinct onset at around 8 wpc and
identified potential novel components in adrenal and testicular steroidogenesis
(e.g. MGARP, FOXO4, MAP3K15, GRAMD1B, RMND2), as well as testis
biomarkers (e.g. SCUBE1). We have also shown that the developing human
ovary expresses distinct subsets of genes (e.g. OR10G9, OR4D5), but
enrichment for established biological pathways is limited.
CONCLUSION: This genomic atlas is revealing important novel aspects of human
development and new candidate genes for adrenal and reproductive disorders
A genomic atlas of human adrenal and gonad development [version 1; referees: awaiting peer review]
Background: In humans, the adrenal glands and gonads undergo distinct biological events between 6-10 weeks post conception (wpc), such as testis determination, the onset of steroidogenesis and primordial germ cell development. However, relatively little is currently known about the genetic mechanisms underlying these processes. We therefore aimed to generate a detailed genomic atlas of adrenal and gonad development across these critical stages of human embryonic and fetal development. / Methods: RNA was extracted from 53 tissue samples between 6-10 wpc (adrenal, testis, ovary and control). Affymetrix array analysis was performed and differential gene expression was analysed using Bioconductor. A mathematical model was constructed to investigate time-series changes across the dataset. Pathway analysis was performed using ClueGo and cellular localisation of novel factors confirmed using immunohistochemistry. / Results: Using this approach, we have identified novel components of adrenal development (e.g. ASB4, NPR3) and confirmed the role of SRY as the main human testis-determining gene. By mathematical modelling time-series data we have found new genes up-regulated with SOX9 in the testis (e.g. CITED1), which may represent components of the testis development pathway. We have shown that testicular steroidogenesis has a distinct onset at around 8 wpc and identified potential novel components in adrenal and testicular steroidogenesis (e.g. MGARP, FOXO4, MAP3K15, GRAMD1B, RMND2), as well as testis biomarkers (e.g. SCUBE1). We have also shown that the developing human ovary expresses distinct subsets of genes (e.g. OR10G9, OR4D5), but enrichment for established biological pathways is limited. / Conclusion: This genomic atlas is revealing important novel aspects of human development and new candidate genes for adrenal and reproductive disorders
Multiexcitons confined within a sub-excitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals
The use of ultrafast gating techniques allows us to resolve both spectrally
and temporally the emission from short-lived neutral and negatively charged
biexcitons in ultrasmall (sub-10 nm) CdSe nanocrystals (nanocrystal quantum
dots). Because of forced overlap of electronic wave functions and reduced
dielectric screening, these states are characterized by giant interaction
energies of tens (neutral biexcitons) to hundreds (charged biexcitons) of meV.
Both types of biexcitons show extremely short lifetimes (from sub-100
picoseconds to sub-picosecond time scales) that rapidly shorten with decreasing
nanocrystal size. These ultrafast relaxation dynamics are explained in terms of
highly efficient nonradiative Auger recombination.Comment: 5 pages, 4 figures, to be published in Phys. Rev.
- …
