1,927 research outputs found
Liquid drop splashing on smooth, rough and textured surfaces
Splashing occurs when a liquid drop hits a dry solid surface at high
velocity. This paper reports experimental studies of how the splash depends on
the roughness and the texture of the surfaces as well as the viscosity of the
liquid. For smooth surfaces, there is a "corona" splash caused by the presence
of air surrounding the drop. There are several regimes that occur as the
velocity and liquid viscosity are varied. There is also a "prompt" splash that
depends on the roughness and texture of the surfaces. A measurement of the size
distribution of the ejected droplets is sensitive to the surface roughness. For
a textured surface in which pillars are arranged in a square lattice,
experiment shows that the splashing has a four-fold symmetry. The splash occurs
predominantly along the diagonal directions. In this geometry, two factors
affect splashing the most: the pillar height and spacing between pillars.Comment: 9 pages, 11 figure
Capillary-gravity waves: The effect of viscosity on the wave resistance
The effect of viscosity on the wave resistance experienced by a 2d
perturbation moving at uniform velocity over the free surface of a fluid is
investigated. The analysis is based on Rayleigh's linearized theory of
capillary-gravity waves. It is shown in particular that the wave resistance
remains bounded as the velocity of the perturbation approches the minimun phase
speed, unlike what is predicted by the inviscid theory.Comment: Europhysics Letters, in pres
VAT revenue elasticities: an analytical approach. ESRI WP596, September 2018
In this paper we construct analytical estimates of the elasticity of VAT revenue with respect to underlying gross income and expenditure for the household sector in Ireland. The responsiveness of VAT revenue to changes in gross income steadily increased up to the late 2000s as marginal income tax rates fell. The introduction of the income levy and the doubling of the health levy resulted in a reduction in the VAT elasticity, as higher income tax rates also reduced the disposable income available for expenditure. This spill-over effect highlights the importance of judging the broader implications of tax policy. It also suggests that policymakers during any subsequent fiscal crisis should be cautious when choosing the composition of tax adjustments, as there is a clear trade-off to be made. The VAT revenue elasticity is lower for Ireland than estimates for the UK, New Zealand and Australia, possibly reflecting the greater progressivity of the Irish income tax system compared to other OECD countries
A note on leapfrogging vortex rings
In this paper we provide examples, by numerical simulation using the Navier-Stokes equations for axisymmetric laminar flow, of the 'leapfrogging' motion of two, initially identical, vortex rings which share a common axis of symmetry. We show that the number of clear passes that each ring makes through the other increases with Reynolds number, and that as long as the configuration remains stable the two rings ultimately merge to form a single vortex ring
Stochastic Perturbations in Vortex Tube Dynamics
A dual lattice vortex formulation of homogeneous turbulence is developed,
within the Martin-Siggia-Rose field theoretical approach. It consists of a
generalization of the usual dipole version of the Navier-Stokes equations,
known to hold in the limit of vanishing external forcing. We investigate, as a
straightforward application of our formalism, the dynamics of closed vortex
tubes, randomly stirred at large length scales by gaussian stochastic forces.
We find that besides the usual self-induced propagation, the vortex tube
evolution may be effectively modeled through the introduction of an additional
white-noise correlated velocity field background. The resulting
phenomenological picture is closely related to observations previously reported
from a wavelet decomposition analysis of turbulent flow configurations.Comment: 16 pages + 2 eps figures, REVTeX
Hydrodynamic and magnetohydrodynamic computations inside a rotating sphere
Numerical solutions of the incompressible magnetohydrodynamic (MHD) equations
are reported for the interior of a rotating, perfectly-conducting, rigid
spherical shell that is insulator-coated on the inside. A previously-reported
spectral method is used which relies on a Galerkin expansion in
Chandrasekhar-Kendall vector eigenfunctions of the curl. The new ingredient in
this set of computations is the rigid rotation of the sphere. After a few
purely hydrodynamic examples are sampled (spin down, Ekman pumping, inertial
waves), attention is focused on selective decay and the MHD dynamo problem. In
dynamo runs, prescribed mechanical forcing excites a persistent velocity field,
usually turbulent at modest Reynolds numbers, which in turn amplifies a small
seed magnetic field that is introduced. A wide variety of dynamo activity is
observed, all at unit magnetic Prandtl number. The code lacks the resolution to
probe high Reynolds numbers, but nevertheless interesting dynamo regimes turn
out to be plentiful in those parts of parameter space in which the code is
accurate. The key control parameters seem to be mechanical and magnetic
Reynolds numbers, the Rossby and Ekman numbers (which in our computations are
varied mostly by varying the rate of rotation of the sphere) and the amount of
mechanical helicity injected. Magnetic energy levels and magnetic dipole
behavior are exhibited which fluctuate strongly on a time scale of a few eddy
turnover times. These seem to stabilize as the rotation rate is increased until
the limit of the code resolution is reached.Comment: 26 pages, 17 figures, submitted to New Journal of Physic
High-Reynolds Number Active Blowing Semi-Span Force Measurement System Development
Recent wind-tunnel tests at the NASA Langley Research Center National Transonic Facility utilized high-pressure bellows to route air to the model for evaluating aircraft circulation control. The introduction of these bellows within the Sidewall Model Support System significantly impacted the performance of the external sidewall mounted semi-span balance. As a result of this impact on the semi-span balance measurement performance, it became apparent that a new capability needed to be built into the National Transonic Facility s infrastructure to allow for performing pressure tare calibrations on the balance in order to properly characterize its performance under the influence of static bellows pressure tare loads and bellows thermal effects. The objective of this study was to design both mechanical calibration hardware and an experimental calibration design that can be employed at the facility in order to efficiently and precisely perform the necessary loadings in order to characterize the semi-span balance under the influence of multiple calibration factors (balance forces/moments and bellows pressure/temperature). Using statistical design of experiments, an experimental design was developed allowing for strategically characterizing the behavior of the semi-span balance for use in circulation control and propulsion-type flow control testing at the National Transonic Facility
Searching for star-planet magnetic interaction in CoRoT observations
Close-in massive planets interact with their host stars through tidal and
magnetic mechanisms. In this paper, we review circumstantial evidence for
star-planet interaction as revealed by the photospheric magnetic activity in
some of the CoRoT planet-hosting stars, notably CoRoT-2, CoRoT-4, and CoRoT-6.
The phenomena are discussed in the general framework of activity-induced
features in stars accompanied by hot Jupiters. The theoretical mechanisms
proposed to explain the activity enhancements possibly related with hot Jupiter
are also briefly reviewed with an emphasis on the possible effects at
photospheric level. The unique advantages of CoRoT and Kepler observations to
test these models are pointed out.Comment: Invited review paper accepted by Astrophysics and Space Science, 13
pages, 5 figure
System design of the Pioneer Venus spacecraft. Volume 2: Science
The objectives of the low-cost Pioneer Venus space probe program are discussed. The space mission and science requirements are analyzed. The subjects considered are as follows: (1) the multiprobe mission, (2) the orbiter mission, (3) science payload accomodations, and (4) orbiter spacecraft experimental interface specifications. Tables of data are provided to show the science allocations for large and small probes. Illustrations of the systems and components of various probe configurations are included
Obesity: A Biobehavioral Point of View
Excerpt: If you ask an overweight person, “Why are you fat?’, you will, almost invariably, get the answer, “Because 1 eat too much.” You will get this answer in spite of the fact that of thirteen studies, six find no significant differences in the caloric intake of obese versus nonobese subjects, five report that the obese eat significantly less than the nonobese, and only two report that they eat significantly more
- …
