2,611 research outputs found
MAX 1991. The active sun: A plan for pursuing the study of the active sun at the time of the next maximum in solar activity, January 1985
The results of the discusions of a working group for the definition of a program for the forthcoming crest of solar activity, 1990 to 1993 are presented. The MAX '91 program described are intended to achieve important scientific goals within the context of the natural solar variability. The heart of the MAX '91 program is a series of campaigns oriented towards specific scientific problems, and taking place in the solar maximum period 1990 to 1993. These campaigns will take advantage of the load-carrying capability of the Space Shuttle to fly instruments with observational capabilities very different from those of the Solar Maximum Mission. Various combinations of instruments appropriate to the specific scientific problem of a given campaign would be flown on a Shuttle sortie mission
Observation of soft X-rays from cosmic sources
A binary X-ray source, an extended extragalactic X-ray source and several nearby stars were surveyed for X-ray emission. The energy spectrum and time structure of X-ray flux from the binary source, Her X-l, was investigated in the range from 0.15 to 6 KeV. This source was observed at a binary phase of 0.18 with the system near elongation normal to the line of sight. Intense pulsations were observed in optical emission lines near this binary phase. The spectrum and angular distribution of X-ray emission from the X-ray source in the Virgo Cluster of Galaxies, near M 87, was also observed. In addition, the stars Alpha Leo, Zeta Her, and Epsilon Vir were investigated. Epsilon Aur and Alpha Aur were also scanned. These stars were studied since there is increasing evidence that such objects may be transient sources of soft X-rays
Mapping X-ray heliometer for Orbiting Solar Observatory-8
An instrument combining mechanical collimators and proportional counter detectors was designed to record solar X-rays with energies of 2-30 keV with good temperal, spectral, and spatial resolution. The overall operation of the instrument is described to the degree needed by personnel who interact with the experimenter during SC/experiment interfacing, experiment testing, observatory integration and testing, and pre/post launch data processing. The general layout of the instrument is given along with a summary of the instrument characteristics
Experimental study of spectral and spatial distribution of solar X-rays
The study of the physical conditions within the solar corona and the development of instrumentation and technical expertise necessary for advanced studies of solar X-ray emission are reported. Details are given on the Aerobee-borne-X-ray spectrometer/monochromator and also on the observing program. Preliminary discussions of some results are presented and include studies of helium-like line emission, mapping O(VII) and Ne(IX) lines, survey of O(VII) and Ne(IX) lines, study of plage regions and small flares, and analysis of line emission from individual active regions. It is concluded that the use of large-area collimated Bragg spectrometers to scan narrow wavelength intervals and the capability of the SPARCS pointing control to execute a complex observing program are established
Analysis of X-ray and EUV spectra of solar active regions
Data acquired by two flights of an array of six Bragg crystal spectrometers on an Aerobee rocket to obtain high spatial and spectral resolution observations of various coronal features at soft X-ray wavelengths (9-23A) were analyzed. The various aspects of the analysis of the X-ray data are described. These observations were coordinated with observations from the experiments on the Apollo Telescope Mount and the various data sets were related to one another. The Appendices contain the published results, abstracts of papers, computer code descriptions and preprints of papers, all produced as a result of this research project
The Lockheed OSO-8 program. Analysis of data from the mapping X-ray heliometer experiment
The final report describes the extent of the analysis effort, and other activities associated with the preservation and documentation of the data set are described. The main scientific results, which are related to the behavior of individual solar activity regions in the energy band 1.5 - 15 keV, are summarized, and a complete bibliography of publications and presentations is given. Copies of key articles are also provided
Report from solar physics
A discussion of the nature of solar physics is followed by a brief review of recent advances in the field. These advances include: the first direct experimental confirmation of the central role played by thermonuclear processes in stars; the discovery that the 5-minute oscillations of the Sun are a global seismic phenomenon that can be used as a probe of the structure and dynamical behavior of the solar interior; the discovery that the solar magnetic field is subdivided into individual flux tubes with field strength exceeding 1000 gauss. Also covered was a science strategy for pure solar physics. Brief discussions are given of solar-terrestrial physics, solar/stellar relationships, and suggested space missions
Comparison of the Geometrical Characters Inside Quark- and Gluon-jet Produced by Different Flavor Quarks
The characters of the angular distributions of quark jets and gluon jets with
different flavors are carefully studied after introducing the cone angle of
jets. The quark jets and gluon jets are identified from the 3-jet events which
are produced by Monte Carlo simulation Jetset7.4 in e+e- collisions at =91.2GeV. It turns out that the ranges of angular distributions of gluon jets
are obviously wider than that of quark jets at the same energies. The average
cone angles of gluon jets are much larger than that of quark jets. As the
multiplicity or the transverse momentum increases, the cone-angle distribution
without momentum weight of both the quark jet and gluon jet all increases, i.e
the positive linear correlation are present, but the cone-angle distribution
with momentum weight decreases at first, then increases when n > 4 or p_t > 2
GeV. The characters of cone angular distributions of gluon jets produced by
quarks with different flavors are the same, while there are obvious differences
for that of the quark jets with different flavors.Comment: 13 pages, 6 figures, to be published on the International Journal of
Modern Physics
- …
