24 research outputs found

    Epigenome-wide SRC-1 mediated gene silencing represses cellular differentiation in advanced breast cancer

    Get PDF
    Abstract Purpose: Despite the clinical utility of endocrine therapies for estrogen receptor–positive (ER) breast cancer, up to 40% of patients eventually develop resistance, leading to disease progression. The molecular determinants that drive this adaptation to treatment remain poorly understood. Methylome aberrations drive cancer growth yet the functional role and mechanism of these epimutations in drug resistance are poorly elucidated. Experimental Design: Genome-wide multi-omics sequencing approach identified a differentially methylated hub of prodifferentiation genes in endocrine resistant breast cancer patients and cell models. Clinical relevance of the functionally validated methyl-targets was assessed in a cohort of endocrine-treated human breast cancers and patient-derived ex vivo metastatic tumors. Results: Enhanced global hypermethylation was observed in endocrine treatment resistant cells and patient metastasis relative to sensitive parent cells and matched primary breast tumor, respectively. Using paired methylation and transcriptional profiles, we found that SRC-1–dependent alterations in endocrine resistance lead to aberrant hypermethylation that resulted in reduced expression of a set of differentiation genes. Analysis of ER-positive endocrine-treated human breast tumors (n = 669) demonstrated that low expression of this prodifferentiation gene set significantly associated with poor clinical outcome (P = 0.00009). We demonstrate that the reactivation of these genes in vitro and ex vivo reverses the aggressive phenotype. Conclusions: Our work demonstrates that SRC-1-dependent epigenetic remodeling is a ’high level’ regulator of the poorly differentiated state in ER-positive breast cancer. Collectively these data revealed an epigenetic reprograming pathway, whereby concerted differential DNA methylation is potentiated by SRC-1 in the endocrine resistant setting. Clin Cancer Res; 24(15); 3692–703. ©2018 AACR.</jats:p

    Emc1 is essential for vision and zebrafish photoreceptor outer segment morphogenesis

    Get PDF
    Inherited retinal diseases (IRDs) are a rare group of eye disorders characterized by progressive dysfunction and degeneration of retinal cells. In this study, we characterized the raifteirí (raf) zebrafish, a novel model of inherited blindness, identified through an unbiased ENU mutagenesis screen. A mutation in the largest subunit of the endoplasmic reticulum membrane protein complex, emc1 was subsequently identified as the causative raf mutation. We sought to eluci-date the cellular and molecular phenotypes in the emc1−/− knockout model and explore the association of emc1 with retinal degeneration. Visual behavior and retinal electrophysiology assays demonstrated that emc1−/− mutants had severe visual impairments. Retinal histology and morphometric analysis revealed extensive abnormalities, including thinning of the photoreceptor layer, in addition to large gaps surrounding the lens. Notably, photoreceptor outer segments were drastically smaller, outer segment protein expression was altered and hyaloid vasculature development was disrupted. Transcriptomic profiling identified cone and rod-specific phototransduction genes significantly downregulated by loss of emc1. These data shed light on why emc1 is a causative gene in inherited retinal disease and how outer segment morphogenesis is regulated

    Structural basis of TIR-domain-assembly formation in MAL- and MyD88-dependent TLR4 signaling

    Get PDF
    Toll-like receptor (TLR) signaling is a key innate immunity response to pathogens. Recruitment of signaling adapters such as MAL (TIRAP) and MyD88 to the TLRs requires Toll/interleukin-1 receptor (TIR)-domain interactions, which remain structurally elusive. Here we show that MAL TIR domains spontaneously and reversibly form filaments in vitro. They also form cofilaments with TLR4 TIR domains and induce formation of MyD88 assemblies. A 7-Å-resolution cryo-EM structure reveals a stable MAL protofilament consisting of two parallel strands of TIR-domain subunits in a BB-loop-mediated head-to-tail arrangement. Interface residues that are important for the interaction are conserved among different TIR domains. Although large filaments of TLR4, MAL or MyD88 are unlikely to form during cellular signaling, structure-guided mutagenesis, combined with in vivo interaction assays, demonstrated that the MAL interactions defined within the filament represent a template for a conserved mode of TIR-domain interaction involved in both TLR and interleukin-1 receptor signaling

    The RHIM within the M45 protein from murine cytomegalovirus forms heteromeric amyloid fibrils with RIPK1 and RIPK3

    Full text link
    AbstractThe M45 protein from murine cytomegalovirus protects infected murine cells from death by necroptosis and can protect human cells from necroptosis induced by TNFR activation, when heterologously expressed. We show that the N-terminal 90 residues of the M45 protein, which contain a RIP Homotypic Interaction Motif (RHIM), are sufficient to confer protection against TNFR-induced necroptosis. This N-terminal region of M45 drives rapid self-assembly into homo-oligomeric amyloid fibrils and interacts with the RHIMs of human RIPK1 and RIPK3 kinases to form heteromeric amyloid fibrils in vitro. An intact RHIM core tetrad is required for the inhibition of cell death by M45 and we show that mutation of those key tetrad residues abolishes homo- and hetero-amyloid assembly by M45 in vitro, suggesting that the amyloidogenic nature of the M45 RHIM underlies its biological activity. Our results indicate that M45 mimics the interactions made by RIPK1 with RIPK3 in forming heteromeric amyloid structures.</jats:p
    corecore