928 research outputs found
Experimental evidence of delocalized states in random dimer superlattices
We study the electronic properties of GaAs-AlGaAs superlattices with
intentional correlated disorder by means of photoluminescence and vertical dc
resistance. The results are compared to those obtained in ordered and
uncorrelated disordered superlattices. We report the first experimental
evidence that spatial correlations inhibit localization of states in disordered
low-dimensional systems, as our previous theoretical calculations suggested, in
contrast to the earlier belief that all eigenstates are localized.Comment: 4 pages, 5 figures. Physical Review Letters (in press
REM near-IR and optical photometric monitoring of Pre-Main Sequence Stars in Orion
We performed an intensive photometric monitoring of the PMS stars falling in
a field of about 10x10 arc-minutes in the vicinity of the Orion Nebula Cluster
(ONC). Photometric data were collected between November 2006 and January 2007
with the REM telescope in the VRIJHK' bands. The largest number of observations
is in the I band (about 2700 images) and in J and H bands (about 500 images in
each filter). From the observed rotational modulation, induced by the presence
of surface inhomogeneities, we derived the rotation periods for 16 stars and
improved previous determinations for the other 13. The analysis of the spectral
energy distributions and, for some stars, of high-resolution spectra provided
us with the main stellar parameters (luminosity, effective temperature, mass,
age, and vsini). We also report the serendipitous detection of two strong
flares in two of these objects. In most cases, the light-curve amplitudes
decrease progressively from the R to H band as expected for cool starspots,
while in a few cases, they can only be modelled by the presence of hot spots,
presumably ascribable to magnetospheric accretion. The application of our own
spot model to the simultaneous light curves in different bands allowed us to
deduce the spot parameters and particularly to disentangle the spot temperature
and size effects on the observed light curves.Comment: 29 pages, 24 figure
An extensive VLT/X-Shooter library of photospheric templates of pre-main sequence stars
Studies of the formation and evolution of young stars and their disks rely on
the knowledge of the stellar parameters of the young stars. The derivation of
these parameters is commonly based on comparison with photospheric template
spectra. Furthermore, chromospheric emission in young active stars impacts the
measurement of mass accretion rates, a key quantity to study disk evolution.
Here we derive stellar properties of low-mass pre-main sequence stars without
disks, which represent ideal photospheric templates for studies of young stars.
We also use these spectra to constrain the impact of chromospheric emission on
the measurements of mass accretion rates. The spectra in reduced,
flux-calibrated, and corrected for telluric absorption form are made available
to the community. We derive the spectral type for our targets by analyzing the
photospheric molecular features present in their VLT/X-Shooter spectra by means
of spectral indices and comparison of the relative strength of photospheric
absorption features. We also measure effective temperature, gravity, projected
rotational velocity, and radial velocity from our spectra by fitting them with
synthetic spectra with the ROTFIT tool. The targets have negligible extinction
and spectral type from G5 to M8. We perform synthetic photometry on the spectra
to derive the typical colors of young stars in different filters. We measure
the luminosity of the emission lines present in the spectra and estimate the
noise due to chromospheric emission in the measurements of accretion luminosity
in accreting stars. We provide a calibration of the photospheric colors of
young PMS stars as a function of their spectral type in a set of standard
broad-band optical and near-infrared filters. For stars with masses of ~
1.5Msun and ages of ~1-5 Myr, the chromospheric noise converts to a limit of
measurable mass accretion rates of ~ 3x10^-10 Msun/yr.Comment: Accepted for publication on Astronomy & Astrophysics. The spectra of
the photospheric templates will be uploaded to Vizier, but are already
available on request. Abstract shortened for arxiv constraints. Language
edited versio
Gaia DR2 view of the Lupus V-VI clouds: the candidate diskless young stellar objects are mainly background contaminants
Extensive surveys of star-forming regions with Spitzer have revealed
populations of disk-bearing young stellar objects. These have provided crucial
constraints, such as the timescale of dispersal of protoplanetary disks,
obtained by carefully combining infrared data with spectroscopic or X-ray data.
While observations in various regions agree with the general trend of
decreasing disk fraction with age, the Lupus V and VI regions appeared to have
been at odds, having an extremely low disk fraction. Here we show, using the
recent Gaia data release 2 (DR2), that these extremely low disk fractions are
actually due to a very high contamination by background giants. Out of the 83
candidate young stellar objects (YSOs) in these clouds observed by Gaia, only
five have distances of 150 pc, similar to YSOs in the other Lupus clouds, and
have similar proper motions to other members in this star-forming complex. Of
these five targets, four have optically thick (Class II) disks. On the one
hand, this result resolves the conundrum of the puzzling low disk fraction in
these clouds, while, on the other hand, it further clarifies the need to
confirm the Spitzer selected diskless population with other tracers, especially
in regions at low galactic latitude like Lupus V and VI. The use of Gaia
astrometry is now an independent and reliable way to further assess the
membership of candidate YSOs in these, and potentially other, star-forming
regions.Comment: Accepted for publication on Astronomy&Astrophysics Letter
A new Classical T Tauri object at the sub-stellar boundary in Chamaeleon II
We have obtained low- and medium-resolution optical spectra of 20 candidate
young low-mass stars and brown dwarfs in the nearby Chamaeleon II dark cloud,
using the Magellan Baade telescope. We analyze these data in conjunction with
near-infrared photometry from the 2-Micron All Sky Survey. We find that one
target, [VCE2001] C41, exhibits broad H(alpha) emission as well as a variety of
forbidden emission lines. These signatures are usually associated with
accretion and outflow in young stars and brown dwarfs. Our spectra of C41 also
reveal LiI in absorption and allow us to derive a spectral type of M5.5 for it.
Therefore, we propose that C41 is a classical T Tauri object near the
sub-stellar boundary. Thirteen other targets in our sample have continuum
spectra without intrinsic absorption or emission features, and are difficult to
characterize. They may be background giants or foreground field stars not
associated with the cloud or embedded protostars, and need further
investigation. The six remaining candidates, with moderate reddening, are
likely to be older field dwarfs, given their spectral types, lack of lithium
and H(alpha).Comment: Astrophysical Journal, accepted June 19, 200
X-Shooter study of accretion in Chamaeleon I: II. A steeper increase of accretion with stellar mass for very low mass stars?
The dependence of the mass accretion rate on the stellar properties is a key
constraint for star formation and disk evolution studies. Here we present a
study of a sample of stars in the Chamaeleon I star forming region carried out
using the VLT/X-Shooter spectrograph. The sample is nearly complete down to
M~0.1Msun for the young stars still harboring a disk in this region. We derive
the stellar and accretion parameters using a self-consistent method to fit the
broad-band flux-calibrated medium resolution spectrum. The correlation between
the accretion luminosity to the stellar luminosity, and of the mass accretion
rate to the stellar mass in the logarithmic plane yields slopes of 1.9 and 2.3,
respectively. These slopes and the accretion rates are consistent with previous
results in various star forming regions and with different theoretical
frameworks. However, we find that a broken power-law fit, with a steeper slope
for stellar luminosity smaller than ~0.45 Lsun and for stellar masses smaller
than ~ 0.3 Msun, is slightly preferred according to different statistical
tests, but the single power-law model is not excluded. The steeper relation for
lower mass stars can be interpreted as a faster evolution in the past for
accretion in disks around these objects, or as different accretion regimes in
different stellar mass ranges. Finally, we find two regions on the mass
accretion versus stellar mass plane empty of objects. One at high mass
accretion rates and low stellar masses, which is related to the steeper
dependence of the two parameters we derived. The second one is just above the
observational limits imposed by chromospheric emission. This empty region is
located at M~0.3-0.4Msun, typical masses where photoevaporation is known to be
effective, and at mass accretion rates ~10^-10 Msun/yr, a value compatible with
the one expected for photoevaporation to rapidly dissipate the inner disk.Comment: Accepted for publication on Astronomy & Astrophysics. Abstract
shortened for arxiv constraints. Revised version after language editin
Cold Disks: Spitzer Spectroscopy of Disks around Young Stars with Large Gaps
We have identified four circumstellar disks with a deficit of dust emission
from their inner 15-50 AU. All four stars have F-G spectral type, and were
uncovered as part of the Spitzer Space Telescope ``Cores to Disks'' Legacy
Program Infrared Spectrograph (IRS) first look survey of ~100 pre-main sequence
stars. Modeling of the spectral energy distributions indicates a reduction in
dust density by factors of 100-1000 from disk radii between ~0.4 and 15-50 AU,
but with massive gas-rich disks at larger radii. This large contrast between
the inner and outer disk has led us to use the term `cold disks' to distinguish
these unusual systems. However, hot dust [0.02-0.2 Mmoon] is still present
close to the central star (R ~0.8 AU). We introduce the 30/13 micron, flux
density ratio as a new diagnostic for identifying cold disks. The mechanisms
for dust clearing over such large gaps are discussed. Though rare, cold disks
are likely in transition from an optically thick to an optically thin state,
and so offer excellent laboratories for the study of planet formation.Comment: 13 pages, 3 figures, accepted to ApJ
A Three Micron Survey of the Chamaeleon I Dark Cloud
We describe an L-band photometric survey of 0.5 square deg of the Cha I dark
cloud. The survey has a completeness limit of L < 11.0. Our survey detects 124
sources, including all known pre-main sequence stars with L < 11. The fraction
of sources with near-IR excess emission is 58% +- 4% for K = 9-11. Cha I
sources have bluer H-K and K-L colors than pre-main sequence stars in
Taurus-Auriga. These sources also have a strong correlation between EW(H-alpha)
and K-L. Stars with K-L 0.6
have strong H-alpha emission. Because many Cha I sources are heavily reddened,
this division between weak emission T Tauri stars and classical T Tauri stars
occurs at a redder K-L than in Taurus-Auriga.Comment: 12 pages of text, 4 figures, and 1 three page table of data modified
version adds reference and acknowledgemen
The Stellar Population of the Chamaeleon I Star-Forming Region
I present a new census of the stellar population in the Chamaeleon I
star-forming region. Using optical and near-IR photometry and followup
spectroscopy, I have discovered 50 new members of Chamaeleon I, expanding the
census of known members to 226 objects. Fourteen of these new members have
spectral types later than M6, which doubles the number of known members that
are likely to be substellar. I have estimated extinctions, luminosities, and
effective temperatures for the known members, used these data to construct an
H-R diagram for the cluster, and inferred individual masses and ages with the
theoretical evolutionary models of Baraffe and Chabrier. The distribution of
isochronal ages indicates that star formation began 3-4 and 5-6 Myr ago in the
southern and northern subclusters, respectively, and has continued to the
present time at a declining rate. The IMF in Chamaeleon I reaches a maximum at
a mass of 0.1-0.15 M_sun, and thus closely resembles the IMFs in IC 348 and the
Orion Nebula Cluster. In logarithmic units where the Salpeter slope is 1.35,
the IMF is roughly flat in the substellar regime and shows no indication of
reaching a minimum down to a completeness limit of 0.01 M_sun. The low-mass
stars are more widely distributed than members at other masses in the northern
subcluster, but this is not the case in the southern subcluster. Meanwhile, the
brown dwarfs have the same spatial distribution as the stars out to a radius of
3 deg (8.5 pc) from the center of Chamaeleon I
A double-lined spectroscopic orbit for the young star HD 34700
We report high-resolution spectroscopic observations of the young star HD
34700, which confirm it to be a double-lined spectroscopic binary. We derive an
accurate orbital solution with a period of 23.4877 +/- 0.0013 days and an
eccentricity of e = 0.2501 +/- 0.0068. The stars are found to be of similar
mass (M2/M1 = 0.987 +/- 0.014) and luminosity. We derive also the effective
temperatures (5900 K and 5800 K) and projected rotational velocities (28 km/s
and 22 km/s) of the components. These values of v sin i are much higher than
expected for main-sequence stars of similar spectral type (G0), and are not due
to tidal synchronization. We discuss also the indicators of youth available for
the object. Although there is considerable evidence that the system is young
--strong infrared excess, X-ray emission, Li I 6708 absorption (0.17 Angstroms
equivalent width), H alpha emission (0.6 Angstroms), rapid rotation-- the
precise age cannot yet be established because the distance is unknown.Comment: 17 pages, including 2 figures and 2 tables. Accepted for publication
in AJ, to appear in February 200
- …
